Appendix

Appendix H Noise

Appendix

This page intentionally left blank.

Fundamentals of Noise

NOISE

Noise is most often defined as unwanted sound; whether it is loud, unpleasant, unexpected, or otherwise undesirable. Although sound can be easily measured, the perception of noise and the physical response to sound complicate the analysis of its impact on people. People judge the relative magnitude of sound sensation in subjective terms such as "noisiness" or "loudness."

Noise Descriptors

The following are brief definitions of terminology used in this chapter:

- Sound. A disturbance created by a vibrating object, which, when transmitted by pressure waves through a medium such as air, is capable of being detected by a receiving mechanism, such as the human ear or a microphone.
- Noise. Sound that is loud, unpleasant, unexpected, or otherwise undesirable.
- Decibel (dB). A unitless measure of sound, expressed on a logarithmic scale and with respect to a defined reference sound pressure. The standard reference pressure is 20 micropascals (20 μPa).
- Vibration Decibel (VdB). A unitless measure of vibration, expressed on a logarithmic scale and with respect to a defined reference vibration velocity. In the U.S., the standard reference velocity is 1 micro-inch per second (1x10⁻⁶ in/sec).
- **A-Weighted Decibel (dBA).** An overall frequency-weighted sound level in decibels that approximates the frequency response of the human ear.
- Equivalent Continuous Noise Level (L_{eq}); also called the Energy-Equivalent Noise Level. The value of an equivalent, steady sound level which, in a stated time period (often over an hour) and at a stated location, has the same A-weighted sound energy as the time-varying sound. Thus, the L_{eq} metric is a single numerical value that represents the equivalent amount of variable sound energy received by a receptor over the specified duration.
- Statistical Sound Level (L_n). The sound level that is exceeded "n" percent of time during a given sample period. For example, the L₅₀ level is the statistical indicator of the time-varying noise signal that is exceeded 50 percent of the time (during each sampling period); that is, half of the sampling time, the changing noise levels are above this value and half of the time they are below it. This is called the "median sound level." The L₁₀ level, likewise, is the value that is exceeded 10 percent of the time (i.e., near the maximum) and this is often known as the "intrusive sound level." The L₉₀ is the sound level exceeded 90 percent of the time and is often considered the "effective background level" or "residual noise level."

- Maximum Sound Level (L_{max}). The highest RMS sound level measured during the measurement period.
- **Root Mean Square Sound Level (RMS).** The square root of the average of the square of the sound pressure over the measurement period.
- Day-Night Sound Level (L_{dn} or DNL). The energy-average of the A-weighted sound levels occurring during a 24-hour period, with 10 dB added to the sound levels occurring during the period from 10:00 PM to 7:00 AM.
- Community Noise Equivalent Level (CNEL). The energy average of the A-weighted sound levels occurring during a 24-hour period, with 5 dB added from 7:00 PM to 10:00 PM and 10 dB from 10:00 PM to 7:00 AM. NOTE: For general community/environmental noise, CNEL and L_{dn} values rarely differ by more than 1 dB (with the CNEL being only slightly more restrictive that is, higher than the L_{dn} value). As a matter of practice, L_{dn} and CNEL values are interchangeable and are treated as equivalent in this assessment.
- **Peak Particle Velocity (PPV).** The peak rate of speed at which soil particles move (e.g., inches per second) due to ground vibration.
- Sensitive Receptor. Noise- and vibration-sensitive receptors include land uses where quiet environments are necessary for enjoyment and public health and safety. Residences, schools, motels and hotels, libraries, religious institutions, hospitals, and nursing homes are examples.

Characteristics of Sound

When an object vibrates, it radiates part of its energy in the form of a pressure wave. Sound is that pressure wave transmitted through the air. Technically, airborne sound is a rapid fluctuation or oscillation of air pressure above and below atmospheric pressure that creates sound waves.

Sound can be described in terms of amplitude (loudness), frequency (pitch), or duration (time). Loudness or amplitude is measured in dB, frequency or pitch is measured in Hertz [Hz] or cycles per second, and duration or time variations is measured in seconds or minutes.

Amplitude

Unlike linear units such as inches or pounds, decibels are measured on a logarithmic scale. Because of the physical characteristics of noise transmission and perception, the relative loudness of sound does not closely match the actual amounts of sound energy. Table 1 presents the subjective effect of changes in sound pressure levels. Ambient sounds generally range from 30 dBA (very quiet) to 100 dBA (very loud). Changes of 1 to 3 dB are detectable under quiet, controlled conditions, and changes of less than 1 dB are usually not discernible (even under ideal conditions). A 3 dB change in noise levels is considered the minimum change that is detectable with human hearing in outside environments. A change of 5 dB is readily discernible to most people in an exterior environment, and a 10 dB change is perceived as a doubling (or halving) of the sound.

Table 1	Noise Perceptibility	
	Change in dB	Noise Level
	± 3 dB	Barely perceptible increase
	± 5 dB	Readily perceptible increase
	± 10 dB	Twice or half as loud
	± 20 dB	Four times or one-quarter as loud
Source: Califo	rnia Department of Transportation (Caltrans). 2013, Sept	tember. Technical Noise Supplement ("TeNS").

Frequency

The human ear is not equally sensitive to all frequencies. Sound waves below 16 Hz are not heard at all, but are "felt" more as a vibration. Similarly, though people with extremely sensitive hearing can hear sounds as high as 20,000 Hz, most people cannot hear above 15,000 Hz. In all cases, hearing acuity falls off rapidly above about 10,000 Hz and below about 200 Hz.

When describing sound and its effect on a human population, A-weighted (dBA) sound levels are typically used to approximate the response of the human ear. The A-weighted noise level has been found to correlate well with people's judgments of the "noisiness" of different sounds and has been used for many years as a measure of community and industrial noise. Although the A-weighted scale and the energy-equivalent metric are commonly used to quantify the range of human response to individual events or general community sound levels, the degree of annoyance or other response also depends on several other perceptibility factors, including:

- Ambient (background) sound level
- General nature of the existing conditions (e.g., quiet rural or busy urban)
- Difference between the magnitude of the sound event level and the ambient condition
- Duration of the sound event
- Number of event occurrences and their repetitiveness
- Time of day that the event occurs

Duration

Time variation in noise exposure is typically expressed in terms of a steady-state energy level equal to the energy content of the time varying period (called L_{eq}), or alternately, as a statistical description of the sound level that is exceeded over some fraction of a given observation period. For example, the L_{50} noise level represents the noise level that is exceeded 50 percent of the time; half the time the noise level exceeds this level and half the time the noise level is less than this level. This level is also representative of the level that is exceeded 30 minutes in an hour. Similarly, the L_2 , L_8 and L_{25} values represent the noise levels that are exceeded 2, 8, and 25 percent of the time or 1, 5, and 15 minutes per hour, respectively. These "n" values are typically used to demonstrate compliance for stationary noise sources with many cities' noise ordinances. Other values typically noted during a noise survey are the L_{min} and L_{max} . These values represent the minimum and maximum root-mean-square noise levels obtained over the measurement period, respectively.

Because community receptors are more sensitive to unwanted noise intrusion during the evening and at night, state law and many local jurisdictions use an adjusted 24-hour noise descriptor called the Community Noise Equivalent Level (CNEL) or Day-Night Noise Level (L_{dn}). The CNEL descriptor requires that an artificial increment (or "penalty") of 5 dBA be added to the actual noise level for the hours from 7:00 PM to 10:00

PM and 10 dBA for the hours from 10:00 PM to 7:00 AM. The L_{dn} descriptor uses the same methodology except that there is no artificial increment added to the hours between 7:00 PM and 10:00 PM. Both descriptors give roughly the same 24-hour level, with the CNEL being only slightly more restrictive (i.e., higher). The CNEL or L_{dn} metrics are commonly applied to the assessment of roadway and airport-related noise sources.

Sound Propagation

Sound dissipates exponentially with distance from the noise source. This phenomenon is known as "spreading loss." For a single-point source, sound levels decrease by approximately 6 dB for each doubling of distance from the source (conservatively neglecting ground attenuation effects, air absorption factors, and barrier shielding). For example, if a backhoe at 50 feet generates 84 dBA, at 100 feet the noise level would be 79 dBA, and at 200 feet it would be 73 dBA. This drop-off rate is appropriate for noise generated by on-site operations from stationary equipment or activity at a project site. If noise is produced by a line source, such as highway traffic, the sound decreases by 3 dB for each doubling of distance over a reflective ("hard site") surface such as concrete or asphalt. Line source noise in a relatively flat environment with ground-level absorptive vegetation decreases by an additional 1.5 dB for each doubling of distance.

Psychological and Physiological Effects of Noise

Physical damage to human hearing begins at prolonged exposure to noise levels higher than 85 dBA. Exposure to high noise levels affects the entire system, with prolonged noise exposure in excess of 75 dBA increasing body tensions, thereby affecting blood pressure and functions of the heart and the nervous system. Extended periods of noise exposure above 90 dBA results in permanent cell damage, which is the main driver for employee hearing protection regulations in the workplace. For community environments, the ambient or background noise problem is widespread, through generally worse in urban areas than in outlying, less-developed areas. Elevated ambient noise levels can result in noise interference (e.g., speech interruption/masking, sleep disturbance, disturbance of concentration) and cause annoyance. Since most people do not routinely work with decibels or A-weighted sound levels, it is often difficult to appreciate what a given sound pressure level number means. To help relate noise level values to common experience, Table 2 shows typical noise levels from familiar sources.

Common Outdoor Activities	Noise Level (dBA)	Common Indoor Activities
Onset of physical discomfort	120+	
	110	
	110	Rock Band (near amplification system)
Jet Flyover at 1,000 feet	100	
Gas Lawn Mower at three feet	100	
Gas Lawit Mower at three reet	90	
Diesel Truck at 50 feet, at 50 mph	70	Food Blender at 3 feet
	80	Garbage Disposal at 3 feet
Noisy Urban Area, Daytime		
ě ř	70	Vacuum Cleaner at 10 feet
Commercial Area		Normal speech at 3 feet
Heavy Traffic at 300 feet	60	
		Large Business Office
Quiet Urban Daytime	50	Dishwasher Next Room
Quiat Urban Nighttima	40	Theater Large Conference Deam (heal/ground)
Quiet Urban Nighttime Quiet Suburban Nighttime	40	Theater, Large Conference Room (background)
	30	Library
Quiet Rural Nighttime	50	Bedroom at Night, Concert Hall (background)
<u> </u>	20	
		Broadcast/Recording Studio
	10	Ÿ
Lowest Threshold of Human Hearing	0	Lowest Threshold of Human Hearing

Source: California Department of Transportation (Caltrans). 2013, September. Technical Noise Supplement ("TeNS"

Vibration Fundamentals

Vibration is an oscillatory motion through a solid medium in which the motion's amplitude can be described in terms of displacement, velocity, or acceleration. Vibration is normally associated with activities stemming from operations of railroads or vibration-intensive stationary sources, but can also be associated with construction equipment such as jackhammers, pile drivers, and hydraulic hammers. As with noise, vibration can be described by both its amplitude and frequency. Vibration displacement is the distance that a point on a surface moves away from its original static position; velocity is the instantaneous speed that a point on a surface moves; and acceleration is the rate of change of the speed. Each of these descriptors can be used to correlate vibration to human response, building damage, and acceptable equipment vibration levels. During construction, the operation of construction equipment can cause groundborne vibration. During the operational phase of a project, receptors may be subject to levels of vibration that can cause annoyance due to noise generated from vibration of a structure or items within a structure.

Vibration amplitudes are usually described in terms of either the peak particle velocity (PPV) or the root mean square (RMS) velocity. PPV is the maximum instantaneous peak of the vibration signal and RMS is the

square root of the average of the squared amplitude of the signal. PPV is more appropriate for evaluating potential building damage and RMS is typically more suitable for evaluating human response.

As with airborne sound, annoyance with vibrational energy is a subjective measure, depending on the level of activity and the sensitivity of the individual. To sensitive individuals, vibrations approaching the threshold of perception can be annoying. Persons accustomed to elevated ambient vibration levels, such as in an urban environment, may tolerate higher vibration levels. Table 3 displays the human response and the effects on buildings resulting from continuous vibration (in terms of various levels of PPV).

Table 3	Human Reaction to Typical vibration Levels	
Vibration Level, PPV (in/sec)	Human Reaction	Effect on Buildings
0.006-0.019	Threshold of perception, possibility of intrusion	Vibrations unlikely to cause damage of any type
0.08	Vibrations readily perceptible	Recommended upper level of vibration to which ruins and ancient monuments should be subjected
0.10	Level at which continuous vibration begins to annoy people	Virtually no risk of "architectural" (i.e. not structural) damage to normal buildings
0.20	Vibrations annoying to people in buildings	Threshold at which there is a risk to "architectural" damage to normal dwelling – houses with plastered walls and ceilings
0.4–0.6	Vibrations considered unpleasant by people subjected to continuous vibrations and unacceptable to some people walking on bridges	Vibrations at a greater level than normally expected from traffic, but would cause "architectural" damage and possibly minor structural damage
Source: California Departr	ment of Transportation (Caltrans). 2020, April. Transportation and Construct	ction Vibration Guidance Manual. Prepared by ICF International.

Table 3Human Reaction to Typical Vibration Levels

LOCAL REGULATIONS AND STANDARDS

10.8 Noise

HS-8 To protect County residents and visitors from the harmful effects of excessive noise while promoting the County economic base.

HS-8.1 Economic Base Protection

The County shall protect its economic base by preventing the encroachment of incompatible land uses on known noise-producing industries, railroads, airports, and other sources.

HS-8.2 Noise Impacted Areas

The County shall designate areas as noise-impacted if exposed to existing or projected noise levels that exceed 60 dB Ldn (or Community Noise Equivalent Level (CNEL)) at the exterior of buildings.

HS-8.3 Noise Sensitive Land Uses

The County shall not approve new noise sensitive uses unless effective mitigation measures are incorporated into the design of such projects to reduce noise levels to 60 dB Ldn (or CNEL) or less within outdoor activity areas and 45 dB Ldn (or CNEL) or less within interior living spaces.

HS-8.4 Airport Noise Contours

The County shall ensure new noise sensitive land uses are located outside the 60 CNEL contour of all public use airports.

HS-8.5 State Noise Standards

The County shall enforce the State Noise Insulation Standards (California Administrative Code, Title 24) and Chapter 35 of the Uniform Building Code (UBC). Title 24 requires that interior noise levels not exceed 45 dB Ldn (or CNEL) with the windows and doors closed within new developments of multi-family dwellings, condominiums, hotels, or motels. Where it is not possible to reduce exterior noise levels within an acceptable range the County shall require the application of noise reduction technology to reduce interior noise levels to an acceptable level.

HS-8.6 Noise Level Criteria

The County shall ensure noise level criteria applied to land uses other than residential or other noise-sensitive uses are consistent with the recommendations of the California Office of Noise Control (CONC).

Table 10.1: Land Use Compatibility for Community Noise Environments (see next page), is provided as a reference concerning the sensitivity of different land uses to their noise environment. It is intended to illustrate the range of noise levels which will allow the full range of activities normally associated with a given land use.

HS-8.7 Inside Noise

The County shall ensure that in instances where the windows and doors must remain closed to achieve the required inside acoustical isolation, mechanical ventilation or air conditioning is provided.

HS-8.8 Adjacent Uses

The County shall not permit development of new industrial, commercial, or other noisegenerating land uses if resulting noise levels will exceed 60 dB Ldn (or CNEL) at the boundary of areas designated and zoned for residential or other noise-sensitive uses, unless it is determined to be necessary to promote the public health, safety and welfare of the County.

HS-8.9 County Equipment

The County shall strive to purchase equipment that complies with noise level performance standards set forth in the Health and Safety Element.

HS-8.10 Automobile Noise Enforcement

The County shall encourage the CHP, Sheriff's office, and local police departments to actively enforce existing sections of the California Vehicle Code relating to adequate vehicle mufflers, modified exhaust systems, and other amplified noise.

HS-8.11 Peak Noise Generators

The County shall limit noise generating activities, such as construction, to hours of normal business operation (7 a.m. to 7 p.m.). No peak noise generating activities shall be allowed to occur outside of normal business hours without County approval.

HS-8.12 Foothill and Mountain Noise

For areas designated by Tulare County as being within Foothill and Mountain Planning Areas and outside Foothill Development Corridors, the hourly Leq resulting from the development or new noise-sensitive land uses or new noise-generating sources shall not exceed 50 dB during the day (7:00 a.m.-10:00 p.m.) or 40 dB during the night (10:00 p.m.-7:00 a.m.) when measured at the boundary of areas containing or planned and zoned for residential or other noise-sensitive land uses. For these same areas and under the same circumstances, the maximum A-weighed noise level (Lmax) shall not exceed 70 dB during the day or 60 dB during the night.

HS-8.13 Noise Analysis

The County shall require a detailed noise impact analysis in areas where current or future exterior noise levels from transportation or stationary sources have the potential to exceed the adopted noise policies of the Health and Safety Element, where there is development of new noise sensitive land uses or the development of potential noise generating land uses near existing sensitive land uses. The noise analysis shall be the responsibility of the project applicant and be prepared by a qualified acoustical engineer (i.e., a Registered Professional Engineer in the State of California, etc.). The analysis shall include recommendations and evidence to establish mitigation that will reduce noise exposure to acceptable levels (such as those referenced in Table 10-1 of the Health and Safety Element).

HS-8.14 Sound Attenuation Features

The County shall require sound attenuation features such as walls, berming, heavy landscaping, between commercial, industrial, and residential uses to reduce noise and vibration impacts.

HS-8.15 Noise Buffering

The County shall require noise buffering or insulation in new development along major streets, highways, and railroad tracks.

L	and Use Category	<u>ر ا</u>	Commu 50 55	nity Noise 60	Exposur 65	e-Ldn or CNEI 70	_ (dB) 75 80
	- Low Density Sin blex, Mobile Home						
Residential	– Multi-Family						
Transient L	odging – Motels, H	Hotels					
	braries, Churches Nursing Homes	3					
Auditorium Amphitheat	s, Concerts Halls, ters						
Sports Arer Sports	nas, Outdoor Spec	tator					
Playground	ls, Neighborhood	Parks					
	es, Riding Stables , Cemeteries	, Water					
Office Build and Profess	dings, Business Co sional	ommercial					
Industrial, I Agriculture	Manufacturing, Uti	lities,					
	Normally Acceptable	involved are of insulation requ	f normal conve uirements.	ntional const	ruction, wit	sumption that a hout any specia	al noise
	Conditionally Acceptable	analysis of the features are in windows and f	e noise reductio icluded in the d iresh air supply	n requirement esign. Conversion of a	nts is made entional co air conditio	ken only after a and needed n nstruction, but v ning will norma	oise insulation vith closed ly suffice.
	Normally	New construct construction o	ion or develop	nent should does procee	generally b d, a detaile	e discouraged. d analysis of th	lf new e noise
	Unacceptable	included in the					leatures

Table 10.1 Land Use Compatibility for Community Noise Environments

(Part I) Page 10-62 August 2012 (As Amended, November 15, 2016 GPA 16-004) Goals and Policies Report

HS-8.16 State Noise Insulation

The County shall enforce the State Noise Insulation Standards (California Administrative Code, Title 24) and Chapter 35 of the Uniform Building Code.

HS-8.17 Coordinate with Caltrans

The County shall work with Caltrans to mitigate noise impacts on sensitive receptors near State roadways, by requiring noise buffering or insulation in new construction.

HS-8.18 Construction Noise

The County shall seek to limit the potential noise impacts of construction activities by limiting construction activities to the hours of 7 am to 7pm, Monday through Saturday when construction activities are located near sensitive receptors. No construction shall occur on Sundays or national holidays without a permit from the County to minimize noise impacts associated with development near sensitive receptors.

HS-8.19 Construction Noise Control

The County shall ensure that construction contractors implement best practices guidelines (i.e. berms, screens, etc.) as appropriate and feasible to reduce construction-related noise-impacts on surrounding land uses.

10.9 Healthy Communities

HS-9

To support healthy lifestyles among residents of Tulare County through the built environment and land use decisions that play an important role in shaping the pattern of community development, in either promoting or discouraging good health for its citizens.

HS-9.1 Healthy Communities

To the maximum extent feasible, the County shall strive through its land use decisions to promote community health and safety for all neighborhoods in the County by encouraging patterns of development that are safe and influence crime prevention, promote a high-quality physical environment and encourage physical activity by means such as sidewalks and walking and biking paths that discourage automobile dependency in existing communities.

HS-9.2 Walkable Communities

The County shall require where feasible, the development of parks, open space, sidewalks and walking and biking paths that promote physical activity and discourage automobile dependency in all future communities.

CONSTRUCTION NOISE MODELING

Report date:	08/14/2024
Case Description:	HOPE-01.0 Demolition

**** Receptor #1 ****

			Baseli	nes (dBA)
Description	Land Use	Daytime	Evening	Night
Residence	Residential	60.0	55.0	50.0

Equipment

Description	Impact Device	Usage (%)	Spec Lmax (dBA)	Actual Lmax (dBA)	Receptor Distance (feet)	Estimated Shielding (dBA)
· · · · · · · · · · · · · · · · · · ·						
Concrete Saw	No	20		89.6	50.0	0.0
Backhoe	No	40		77.6	50.0	0.0
Front End Loader	No	40		79.1	50.0	0.0

Results -----

Noise Limits (dBA)

	Calculat	ed (dBA)	Day	/	Eveni	.ng	Nigh	 t	Day	·	Eveni	.ng	Nigh	nt
Equipment	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq
Concrete Saw	89.6	82.6	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Backhoe	77.6	73.6	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Front End Loader	79.1	75.1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total	89.6	83.7	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Report date:	08/14/2024
Case Description:	HOPE-01.0 Site Preparation

**** Receptor #1 ****

		Baselines (dBA							
Description	Land Use	Daytime	Evening	Night					
Residence	Residential	60.0	55.0	50.0					

	Equipment											
Description	Impact Device	Usage (%)	Spec Lmax (dBA)	Actual Lmax (dBA)	Receptor Distance (feet)	Estimated Shielding (dBA)						
Grader	No	40	85.0		50.0	0.0						
Backhoe	No	40		77.6	50.0	0.0						
Dozer	No	40		81.7	50.0	0.0						

Results

Noise Limit Exceedance (dBA)

		Calculat	ed (dBA)	Day	/	Eveni	ng	Nigł	nt	Day	·	Eveni	.ng	Nigł	ht
Equipment		Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq
Grader Backhoe		85.0 77.6	81.0 73.6	N/A N/A	N/A N/A N/A	N/A N/A	N/A N/A	N/A N/A							
Dozer	Total	81.7 85.0	77.7 83.2	N/A N/A	N/A N/A	N/A N/A	N/A N/A								

Noise Limits (dBA)

Report date:	08/14/2024
Case Description:	HOPE-01.0 Rough Grading

**** Receptor #1 ****

			Baselines (dBA)					
Description	Land Use	Daytime	Evening	Night				
Residence	Residential	60.0	55.0	50.0				

	Equipment												
			-										
Description	Impact Device	Usage (%)	Spec Lmax (dBA)	Actual Lmax (dBA)	Receptor Distance (feet)	Estimated Shielding (dBA)							
Grader	No	40	85.0		50.0	0.0							
Tractor	No	40	84.0		50.0	0.0							
Dozer	No	40		81.7	50.0	0.0							

Results

-----Noise Limits (dBA)

		Calculat	ed (dBA)	Day	Day		Evening Night		Day		Evening		Night		
Equipment		Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq
Grader Tractor		85.0 84.0	81.0 80.0	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
Dozer	Total	81.7 85.0	77.7 84.6	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A

Report date:	08/14/2024					
Case Description:	HOPE-01.0 Paving					

**** Receptor #1 ****

			Baselines (d						
Description	Land Use	Daytime	Evening	Night					
Residence	Residential	60.0	55.0	50.0					

Equipment

Description	Impact Device	Usage (%)	Spec Lmax (dBA)	Actual Lmax (dBA)	Receptor Distance (feet)	Estimated Shielding (dBA)
Paver	No	50		77.2	50.0	0.0
Roller	No	20		80.0	50.0	0.0
Front End Loader	No	40		79.1	50.0	0.0

Results -----

Noise Limits (dBA)

	Calculat	ed (dBA)	Day	·	Eveni	Ing	Nigh	nt	Day	/	Eveni	ing	Nigł	 nt
Equipment	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq
Paver	77.2	74.2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Roller	80.0	73.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Front End Loader	79.1	75.1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total	80.0	79.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Report date:	08/14/2024
Case Description:	HOPE-01.0 Building Construction

**** Receptor #1 ****

			Baselines (dBA				
Description	Land Use	Daytime	Evening	Night			
Residence	Residential	60.0	55.0	50.0			

Equipment

Description	Impact Device	Usage (%)	Spec Lmax (dBA)	Actual Lmax (dBA)	Receptor Distance (feet)	Estimated Shielding (dBA)							
Crane	No	16		80.6	50.0	0.0							
Generator	No	50		80.6	50.0	0.0							
Welder / Torch	No	40		74.0	50.0	0.0							

Results

-----Noise Limits (dBA)

	Calculat	ed (dBA)	Day	Day		Evening Night		Day		Evening		Night		
Equipment	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq
Crane	80.6	72.6	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Generator	80.6	77.6	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Welder / Torch	74.0	70.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total	80.6	79.3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Report date:	08/14/2024
Case Description:	HOPE-01.0 Architectural Coating

**** Receptor #1 ****

			Baseli	nes (dBA)
Description	Land Use	Daytime	Evening	Night
Residence	Residential	60.0	55.0	50.0

			Equipm	ent		
Description	Impact Device	Usage (%)	Spec Lmax (dBA)	Actual Lmax (dBA)	Receptor Distance (feet)	Estimated Shielding (dBA)
Compressor (air)	No	40		77.7	50.0	0.0

Results

_ _ _ _ _ _ _

Noise Limit Exceedance (dBA)

	Calculate	ed (dBA)	Day		Eveni	.ng	Nigh	it	Day		Eveni	ng
Equipment	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq
Compressor (air) Total	77.7	73.7 73.7	N/A N/A	N/A N/A N/A	N/A N/A							

Noise Limits (dBA)

Nigh	 t
Lmax	Leq
N/A N/A	N/A N/A

HOPE-01.0 - Construction Noise Modeling Attenuation Calculations

	Le	vels in dBA Leq			
Phase	RCNM Reference Noise Level	Receptor to North	Receptor to South	Receptor to East	Receptor to West
Distance in feet	50	250	940	915	450
Demolition	84	70	59	59	65
Site Prep	83	69	58	58	64
Rough Grading	85	71	60	60	66
Distance in feet	50	250	940	915	450
Building Construction	79	65	54	54	60
Architectural Coating	74	60	49	49	55
Distance in feet	50	200	850	870	320
Paving	79	67	54	54	63
Attenuation calculated throu	igh Inverse Square Lav	w: Lp(R2) = Lp(R1)	- 20Log(R2/R1)		

HOPE-01.0 - Vibra	ation Damage	Attenuation Cal	culations	
		Levels, PPV (in/sec)		
	Vibration Reference Level	Receptor to North	Receptor to West	Receptor to West
Distance in feet	at 25 feet	215	360	85
Vibratory Roller	0.21	0.008	0.004	0.033
Hoe Ram	0.089	0.004	0.002	0.014
Large Bulldozer	0.089	0.004	0.002	0.014
Loaded Trucks	0.076	0.003	0.001	0.012
Jackhammer	0.035	0.001	0.001	0.006
Small Bulldozer	0.003	0.000	0.000	0.000

TRAFFIC NOISE MODELING

Traffi	: Noise Ca	alculator:	FHWA 7	7-108			Hope ES Gymnasium/Cla	ssroom Building Project	(HOPE-01.0) Existing 2024 S	chool Only T	raffic Noise												
	d	BA at 50 fee	Out t		nce to CNEL	Contour						Input	S									Auto	Inputs
ID	L _{eq-24hr}	L _{dn}	CNEL	70 dBA	65 dBA	60 dBA	Roadway		egment om - To	ADT	Posted Speed Limit	Grade	% Autos	% Med Trucks	% Heavy Trucks	% Daytime	% Evening	% Night	Number of Lanes	Site Condition	Distance to Reciever	Ground Absorption	Lane Distance
1	54.3	57.1	57.6	7	16	35	Teapot Dome Ave	School Site	to the West	3,640	25	0.0%	93.2%	1.5%	1.0%	80.0%	10.0%	10.0%	2	Soft	50	0.5	20
2	54.3	57.1	57.6	7	16	35	Teapot Dome Ave	School Site	to the East	3,640	25	0.0%	93.2%	1.5%	1.0%	80.0%	10.0%	10.0%	2	Soft	50	0.5	20

Traffi	c Noise Ca	alculator:	FHWA 7	7-108			Hope ES Gymnasium/Cla	ssroom Building Project	(HOPE-01.0) Existing Plus P	roject Schoo	l Only Traffic No	ise											
	d	BA at 50 fee	Out t		nce to CNEL	Contour						Input	s									Auto	Inputs
ID	L _{eq-24hr}	L _{dn}	CNEL	70 dBA	65 dBA	60 dBA	Roadway		egment om - To	ADT	Posted Speed Limit	Grade	% Autos	% Med Trucks	% Heavy Trucks	% Daytime	% Evening	% Night	Number of Lanes	Site Condition	Distance to Reciever	Ground Absorption	Lane Distance
1	54.5	57.3	57.8	8	17	36	Teapot Dome Ave	School Site	to the West	3,810	25	0.0%	93.2%	1.5%	1.0%	80.0%	10.0%	10.0%	2	Soft	50	0.5	20
2	54.4	57.2	57.6	7	16	35	Teapot Dome Ave	School Site	to the East	3,670	25	0.0%	93.2%	1.5%	1.0%	80.0%	10.0%	10.0%	2	Soft	50	0.5	20

Traffi	c Noise Ca	alculator:	FHWA 7	7-108			Hope ES Gymnasium/Cla	ssroom Building Project	(HOPE-01.0) Existing 2024 T	heater Traffi	ic Noise												
	d	BA at 50 fee	Out t	-	nce to CNEL	Contour						Input	S									Auto	Inputs
ID	L _{eq-24hr}	L _{dn}	CNEL	70 dBA	65 dBA	60 dBA	Roadway		egment om - To	ADT	Posted Speed Limit	Grade	% Autos	% Med Trucks	% Heavy Trucks	% Daytime	% Evening	% Night	Number of Lanes	Site Condition	Distance to Reciever	Ground Absorption	Lane Distance
1	54.3	57.1	57.6	7	16	35	Teapot Dome Ave	School Site	to the West	3,640	25	0.0%	93.2%	1.5%	1.0%	80.0%	10.0%	10.0%	2	Soft	50	0.5	20
2	54.3	57.1	57.6	7	16	35	Teapot Dome Ave	School Site	to the East	3,640	25	0.0%	93.2%	1.5%	1.0%	80.0%	10.0%	10.0%	2	Soft	50	0.5	20

Traffi	: Noise Ca	lculator:	FHWA 7	7-108			Hope ES Gymnasium/Cla	ssroom Building Project	(HOPE-01.0) Existing Plus Pi	oject Schoo	l Only Traffic No	ise											
	d	BA at 50 fee	Out t	-	nce to CNEL	Contour						Input	s									Auto	Inputs
ID	L _{eq-24hr}	L _{dn}	CNEL	70 dBA	65 dBA	60 dBA	Roadway		egment om - To	ADT	Posted Speed Limit	Grade	% Autos	% Med Trucks	% Heavy Trucks	% Daytime	% Evening	% Night	Number of Lanes	Site Condition	Distance to Reciever	Ground Absorption	Lane Distance
1	54.8	57.6	58.1	8	17	37	Teapot Dome Ave	School Site	to the West	4,080	25	0.0%	93.2%	1.5%	1.0%	80.0%	10.0%	10.0%	2	Soft	50	0.5	20
2	54.4	57.2	57.7	8	16	35	Teapot Dome Ave	School Site	to the East	3,720	25	0.0%	93.2%	1.5%	1.0%	80.0%	10.0%	10.0%	2	Soft	50	0.5	20

Traffi	: Noise Ca	alculator:	FHWA 7	7-108			Hope ES Gymnasium/Cla	ssroom Building Project	(HOPE-01.0) Future (2028)	School Only	Traffic Noise												
	d	BA at 50 fee	Out t	-	nce to CNEL	Contour						Input	s									Auto	Inputs
ID	L _{eq-24hr}	L _{dn}	CNEL	70 dBA	65 dBA	60 dBA	Roadway		egment om - To	ADT	Posted Speed Limit	Grade	% Autos	% Med Trucks	% Heavy Trucks	% Daytime	% Evening	% Night	Number of Lanes	Site Condition	Distance to Reciever	Ground Absorption	Lane Distance
1	55.0	57.8	58.3	8	18	38	Teapot Dome Ave	School Site	to the West	4,260	25	0.0%	93.2%	1.5%	1.0%	80.0%	10.0%	10.0%	2	Soft	50	0.5	20
2	55.0	57.8	58.3	8	18	38	Teapot Dome Ave	School Site	to the East	4,260	25	0.0%	93.2%	1.5%	1.0%	80.0%	10.0%	10.0%	2	Soft	50	0.5	20

Traffi	c Noise Ca	alculator:	FHWA 7	7-108			Hope ES Gymnasium/Classroom Building Project (HOPE-01.0) Future (2028) Plus Project Traffic Noise																
	Output dBA at 50 feet Distance to CNEL Contour				Contour		Inputs															Inputs	
ID	L _{eq-24hr}	L _{dn}	CNEL	70 dBA	65 dBA	60 dBA	Roadway		egment om - To	ADT	Posted Speed Limit	Grade	% Autos	% Med Trucks	% Heavy Trucks	% Daytime	% Evening	% Night	Number of Lanes	Site Condition	Distance to Reciever	Ground Absorption	Lane Distance
1	55.2	58.0	58.4	8	18	39	Loara Street	School Site	to the North	4,430	25	0.0%	93.2%	1.5%	1.0%	80.0%	10.0%	10.0%	2	Soft	50	0.5	20
2	55.0	57.8	58.3	8	18	39	Loara Street	School Site	to the South	4,290	25	0.0%	93.2%	1.5%	1.0%	80.0%	10.0%	10.0%	2	Soft	50	0.5	20

Traffi	: Noise Ca	lculator:	FHWA 7	7-108			Hope ES Gymnasium/Classroom Building Project (HOPE-01.0) Future (2028)Theater Traffic Noise																
	Output dBA at 50 feet Distance to CNEL Contour				Contour	Inputs															Auto	Inputs	
ID	L _{eq-24hr}	L _{dn}	CNEL	70 dBA	65 dBA	60 dBA	Roadway		egment om - To	ADT	Posted Speed Limit	Grade	% Autos	% Med Trucks	% Heavy Trucks	% Daytime	% Evening	% Night	Number of Lanes	Site Condition	Distance to Reciever	Ground Absorption	Lane Distance
1	55.0	57.8	58.3	8	18	38	Teapot Dome Ave	School Site	to the West	4,260	25	0.0%	93.2%	1.5%	1.0%	80.0%	10.0%	10.0%	2	Soft	50	0.5	20
2	55.0	57.8	58.3	8	18	38	Teapot Dome Ave	School Site	to the East	4,260	25	0.0%	93.2%	1.5%	1.0%	80.0%	10.0%	10.0%	2	Soft	50	0.5	20

Traffi	: Noise Ca	lculator:	FHWA 7	7-108			Hope ES Gymnasium/Classroom Building Project (HOPE-01.0) Future (2028)Theater Traffic Noise																
	Output dBA at 50 feet Distance to CNEL Contour				Contour		Inputs															Inputs	
ID	L _{eq-24hr}	L _{dn}	CNEL	70 dBA	65 dBA	60 dBA	Roadway		egment om - To	ADT	Posted Speed Limit	Grade	% Autos	% Med Trucks	% Heavy Trucks	% Daytime	% Evening	% Night	Number of Lanes	Site Condition	Distance to Reciever	Ground Absorption	Lane Distance
1	55.4	58.2	58.7	9	19	41	Teapot Dome Ave	School Site	to the West	4,700	25	0.0%	93.2%	1.5%	1.0%	80.0%	10.0%	10.0%	2	Soft	50	0.5	20
2	55.1	57.9	58.3	8	18	39	Teapot Dome Ave	School Site	to the East	4,340	25	0.0%	93.2%	1.5%	1.0%	80.0%	10.0%	10.0%	2	Soft	50	0.5	20