Appendix

Appendix B Air Quality, Energy, and Greenhouse Gas Modeling and Background

Appendix

This page intentionally left blank.

Air Quality and Greenhouse Gas Background and Modeling Data

AIR QUALITY

Air Quality Regulatory Setting

The proposed project has the potential to release gaseous emissions of criteria pollutants and dust into the ambient air; therefore, it falls under the ambient air quality standards promulgated at the local, state, and federal levels. The project site is in the San Joaquin Valley Air Basin and is subject to the rules and regulations imposed by the San Joaquin Air Pollution Control District (SJVAB). However, SJVAB reports to California Air Resources board (CARB), and all criteria emissions are also governed by the California and national Ambient Air Quality Standards (AAQS). Federal, state, regional, and local laws, regulations, plans, or guidelines that are potentially applicable to the proposed project are summarized below.

AMBIENT AIR QUALITY STANDARDS

The Clean Air Act (CAA) was passed in 1963 by the US Congress and has been amended several times. The 1970 Clean Air Act amendments strengthened previous legislation and laid the foundation for the regulatory scheme of the 1970s and 1980s. In 1977, Congress again added several provisions, including nonattainment requirements for areas not meeting National AAQS and the Prevention of Significant Deterioration program. The 1990 amendments represent the latest in a series of federal efforts to regulate the protection of air quality in the United States. The CAA allows states to adopt more stringent standards or to include other pollution species. The California Clean Air Act (CCAA), signed into law in 1988, requires all areas of the state to achieve and maintain the California AAQS by the earliest practical date. The California AAQS tend to be more restrictive than the National AAQS, based on even greater health and welfare concerns.

These National AAQS and California AAQS are the levels of air quality considered to provide a margin of safety in the protection of the public health and welfare. They are designed to protect "sensitive receptors" most susceptible to further respiratory distress, such as asthmatics, the elderly, very young children, people already weakened by other disease or illness, and persons engaged in strenuous work or exercise. Healthy adults can tolerate occasional exposure to air pollutant concentrations considerably above these minimum standards before adverse effects are observed.

Both California and the federal government have established health-based AAQS for seven air pollutants. As shown in Table 1, *Ambient Air Quality Standards for Criteria Pollutants*, these pollutants include ozone (O₃), nitrogen dioxide (NO₂), carbon monoxide (CO), sulfur dioxide (SO₂), coarse inhalable particulate matter (PM₁₀), fine inhalable particulate matter (PM_{2.5}), and lead (Pb). In addition, the state has set standards for

sulfates, hydrogen sulfide, vinyl chloride, and visibility-reducing particles. These standards are designed to protect the health and welfare of the populace with a reasonable margin of safety.

Pollutant	Averaging Time	California Standard ¹	Federal Primary Standard ²	Major Pollutant Sources	
Ozone (O ₃) ³	1 hour	0.09 ppm	*	Motor vehicles, paints, coatings, and solvents.	
	8 hours	0.070 ppm	0.070 ppm		
Carbon Monoxide (CO)	1 hour	20 ppm	35 ppm	Internal combustion engines, primarily gasoline-powered motor vehicles.	
(00)	8 hours	9.0 ppm	9 ppm	motor venicies.	
Nitrogen Dioxide (NO2)	Annual Arithmetic Mean	0.030 ppm	0.053 ppm	Motor vehicles, petroleum-refining operations, industrial sources, aircraft, ships, and railroads.	
	1 hour	0.18 ppm	0.100 ppm		
Sulfur Dioxide (SO ₂)	Annual Arithmetic Mean	*	0.030 ppm	Fuel combustion, chemical plants, sulfur recovery plants, and metal processing.	
	1 hour	0.25 ppm	0.075 ppm		
	24 hours	0.04 ppm	0.14 ppm		
Respirable Coarse Particulate Matter	Annual Arithmetic Mean	20 µg/m ³	*	Dust and fume-producing construction, industrial, and agricultural operations, combustion, atmospheric	
(PM ₁₀)	24 hours	50 µg/m³	150 µg/m³	photochemical reactions, and natural activities (e.g., win raised dust and ocean sprays).	
Respirable Fine Particulate Matter (PM _{2.5}) ⁴	Annual Arithmetic Mean	12 µg/m ³	12 µg/m³	Dust and fume-producing construction, industrial, and agricultural operations, combustion, atmospheric	
	24 hours	*	35 µg/m³	photochemical reactions, and natural activities (e.g., wind- raised dust and ocean sprays).	
Lead (Pb)	30-Day Average	1.5 µg/m³	*	Present source: lead smelters, battery manufacturing &	
	Calendar Quarter	*	1.5 µg/m³	recycling facilities. Past source: combustion of leaded gasoline.	
	Rolling 3-Month Average	*	0.15 µg/m³		
Sulfates (SO ₄) ⁵	24 hours	25 µg/m ³	*	Industrial processes.	
Visibility Reducing Particles	8 hours	ExCo =0.23/km visibility of 10≥ miles	No Federal Standard	Visibility-reducing particles consist of suspended particulate matter, which is a complex mixture of tiny particles that consists of dry solid fragments, solid cores with liquid coatings, and small droplets of liquid. These particles vary greatly in shape, size and chemical composition, and can be made up of many different materials such as metals, soot, soil, dust, and salt.	

 Table 1
 Ambient Air Quality Standards for Criteria Pollutants

Pollutant	Averaging Time	California Standard ¹	Federal Primary Standard ²	Major Pollutant Sources
Hydrogen Sulfide	1 hour	0.03 ppm	No Federal Standard	Hydrogen sulfide (H_2S) is a colorless gas with the odor of rotten eggs. It is formed during bacterial decomposition of sulfur-containing organic substances. Also, it can be present in sewer gas and some natural gas and can be emitted as the result of geothermal energy exploitation.
Vinyl Chloride	24 hours	0.01 ppm	No Federal Standard	Vinyl chloride (chloroethene), a chlorinated hydrocarbon, is a colorless gas with a mild, sweet odor. Most vinyl chloride is used to make polyvinyl chloride (PVC) plastic and vinyl products. Vinyl chloride has been detected near landfills, sewage plants, and hazardous waste sites, due to microbial breakdown of chlorinated solvents.

Table 1 Ambient Air Quality Standards for Criteria Pollutants

Source: CARB 2016.

Notes: ppm: parts per million; µg/m3: micrograms per cubic meter

* Standard has not been established for this pollutant/duration by this entity.

1 California standards for O₃, CO (except 8-hour Lake Tahoe), SO₂ (1 and 24 hour), NO₂, and particulate matter (PM₁₀, PM₂₅, and visibility reducing particles), are values that are not to be exceeded. All others are not to be equaled or exceeded. California ambient air quality standards are listed in the Table of Standards in Section 70200 of Title 17 of the California Code of Regulations.

- 2 National standards (other than O₃, PM, and those based on annual arithmetic mean) are not to be exceeded more than once a year. The O₃ standard is attained when the fourth highest 8-hour concentration measured at each site in a year, averaged over three years, is equal to or less than the standard. For PM₁₀, the 24-hour standard is attained when the expected number of days per calendar year with a 24-hour average concentration above 150 µg/m³ is equal to or less than one. For PM₂₅, the 24-hour standard is attained when 98 percent of the daily concentrations, averaged over three years, are equal to or less than the standard.
- 3 On October 1, 2015, the national 8-hour ozone primary and secondary standards were lowered from 0.075 to 0.070 ppm.
 4 On December 14, 2012, the national annual PM_{2.5} primary standard was lowered from 15 µg/m³ to 12.0 µg/m³. The existing national 24-hour PM_{2.5} standards (primary and secondary) were retained at 35 µg/m³, as was the annual secondary standard of 15 µg/m³. The existing 24-hour PM₁₀ standards (primary and secondary) of 150 µg/m³ also were retained. The form of the annual primary and secondary standards is the annual mean, averaged over 3 years.

5 On June 2, 2010, a new 1-hour SO₂ standard was established and the existing 24-hour and annual primary standards were revoked. The 1-hour national standard is in units of parts per billion (ppb). California standards are in units of parts per million (ppm). To directly compare the 1-hour national standard to the California standard the units can be converted to ppm. In this case, the national standard of 75 ppb is identical to 0.075 ppm.

California has also adopted a host of other regulations that reduce criteria pollutant emissions, including:

- AB 1493: Pavley Fuel Efficiency Standards
- Title 20 California Code of Regulations (CCR): Appliance Energy Efficiency Standards
- Title 24, Part 6, CCR: Building and Energy Efficiency Standards
- Title 24, Part 11, CCR: Green Building Standards Code

AIR POLLUTANTS OF CONCERN

Criteria Air Pollutants

The air pollutants emitted into the ambient air by stationary and mobile sources are regulated by federal and state law. Air pollutants are categorized as primary or secondary pollutants. Primary air pollutants are those that are emitted directly from sources and include CO, VOC, NO₂, SO_x, PM₁₀, PM_{2.5}, and Pb. Of these, CO, SO₂, NO₂, PM₁₀, and PM_{2.5} are "criteria air pollutants," which means that ambient air quality standards (AAQS) have been established for them. VOC and oxides of nitrogen (NO_x) are air pollutant precursors that form secondary criteria pollutants through chemical and photochemical reactions in the atmosphere. Ozone (O₃) and NO₂ are the principal secondary pollutants. A description of each of the primary and secondary criteria air pollutants and their known health effects is presented below.

Carbon Monoxide (CO) is a colorless, odorless gas produced by incomplete combustion of carbon substances, such as gasoline or diesel fuel. CO is a primary criteria air pollutant. CO concentrations tend to be the highest during winter mornings with little to no wind, when surface-based inversions trap the pollutant at ground levels. The highest ambient CO concentrations are generally found near traffic congested corridors and intersections. The primary adverse health effect associated with CO is interference with normal oxygen transfer to the blood, which may result in tissue oxygen deprivation (CARB 2024a).

Volatile Organic Compounds (VOC) are composed primarily of hydrogen and carbon atoms. Internal combustion associated with motor vehicle usage is the major source of VOCs. Other sources include evaporative emissions from paints and solvents, asphalt paving, and household consumer products such as aerosols. There are no AAQS for VOCs, meaning that no health-based criteria established by the US EPA or CARB. However, because they contribute to the formation of O₃, the SJVAPCD has established a significance threshold for this pollutant.

Nitrogen Oxides (NO_x) are a by-product of fuel combustion and contribute to the formation of groundlevel O₃, PM₁₀, and PM_{2.5}. The two major forms of NO_x are nitric oxide (NO) and nitrogen dioxide (NO₂). NO is a colorless, odorless gas formed from atmospheric nitrogen and oxygen when combustion takes place under high temperature and/or high pressure. The principal form of NO_x produced by combustion is NO, but NO reacts quickly with oxygen to form NO₂, creating the mixture of NO and NO₂ commonly called NO_x. NO₂ is an acute irritant and more injurious than NO in equal concentrations. At atmospheric concentrations, however, NO₂ is only potentially irritating. NO₂ absorbs blue light; the result is a brownishred cast to the atmosphere and reduced visibility. NO₂ exposure concentrations near roadways are of particular concern for susceptible individuals, including asthmatics, children, and the elderly. Current scientific evidence links short-term NO₂ exposures, ranging from 30 minutes to 24 hours, with adverse respiratory effects, including airway inflammation in healthy people and increased respiratory symptoms in people with asthma. Also, studies show a connection between elevated short-term NO₂ concentrations and increased visits to emergency departments and hospital admissions for respiratory issues, especially asthma (CARB 2024b).

Sulfur Dioxide (SO₂) is a colorless, pungent, irritating gas formed by the combustion of sulfurous fossil fuels. It enters the atmosphere as a result of burning high-sulfur-content fuel oils and coal and chemical processes at plants and refineries. Gasoline and natural gas have very low sulfur content and do not release significant quantities of SO2. When sulfur dioxide forms sulfates (SO4) in the atmosphere, together these pollutants are referred to as sulfur oxides (SOX). Thus, SO2 is both a primary and secondary criteria air pollutant. At sufficiently high concentrations, SO2 may irritate the upper respiratory tract. Current scientific evidence links short-term exposures to SO2, ranging from 5 minutes to 24 hours, with an array of adverse respiratory effects, including bronchoconstriction and increased asthma symptoms. These effects are particularly adverse for asthmatics at elevated ventilation rates (e.g., while exercising or playing) at lower concentrations and when combined with particulates, SO2 may do greater harm by injuring lung tissue. Studies also show a connection between short-term exposure and increased visits to emergency facilities and hospital admissions for respiratory illnesses, particularly in at-risk populations such as children, the elderly, and asthmatics (CARB 2024c).

Suspended Particulate Matter (PM10 and PM2.5) consists of finely divided solids or liquids such as soot, dust, aerosols, fumes, and mists. Two forms of fine particulates are now recognized and regulated. Inhalable coarse particles, or PM_{10} , include particulate matter with an aerodynamic diameter of 10 microns or less (i.e., \leq 10 millionths of a meter or 0.0004 inch). Inhalable fine particles, or PM_{2.5}, have an aerodynamic diameter of 2.5 microns or less (i.e., \leq 2.5 millionths of a meter or 0.0001 inch). Particulate discharge into the atmosphere the atmosphere results primarily from industrial, agricultural, construction, and transportation activities. Both PM_{10} and $PM_{2.5}$ may adversely affect the human respiratory system, especially in people who are naturally sensitive or susceptible to breathing problems. The US EPA's scientific review concluded that PM2.5, which penetrates deeply into the lungs, is more likely than PM_{10} to contribute to health effects and at far lower concentrations. These health effects include premature death in people with heart or lung disease, nonfatal heart attacks, irregular heartbeat, aggravated asthma, decreased lung function, and increased respiratory symptoms (e.g., irritation of the airways, coughing, or difficulty breathing). There has been emerging evidence that ultrafine particulates, which are even smaller particulates with an aerodynamic diameter of < 0.1 microns or less (i.e., ≤ 0.1 millionths of a meter or < 0.000004 inch), have human health implications, because their toxic components may initiate or facilitate biological processes that may lead to adverse effects to the heart, lungs, and other organs (CARB 2024d).

Ozone (O_3) is a key ingredient of "smog" and is a gas that is formed when VOCs and NO_X, both byproducts of internal combustion engine exhaust, undergo photochemical reactions in sunlight. O_3 is a secondary criteria air pollutant. O_3 concentrations are generally highest during the summer months when direct sunlight, light winds, and warm temperatures create favorable conditions for its formation. O_3 poses a health threat to those who already suffer from respiratory diseases as well as to healthy people. Breathing O_3 can trigger a variety of health problems, including chest pain, coughing, throat irritation, and congestion. It can worsen bronchitis, emphysema, and asthma. Ground-level O_3 also can reduce lung function and inflame the linings of the lungs. Repeated exposure may permanently scar lung tissue. O_3 also affects sensitive vegetation and ecosystems, including forests, parks, wildlife refuges, and wilderness areas (CARB 2024e).

Lead (Pb) is a metal found naturally in the environment as well as in manufactured products. Once taken into the body, lead distributes throughout the body in the blood and accumulates in the bones. Depending on the level of exposure, lead can adversely affect the nervous system, kidney function, immune system, reproductive and developmental systems, and the cardiovascular system. Lead exposure also affects the oxygen-carrying capacity of the blood. The effects of lead most commonly encountered in current populations are neurological effects in children and cardiovascular effects in adults (e.g., high blood pressure and heart disease). Infants and young children are especially sensitive to even low levels of lead, which may contribute to behavioral problems, learning deficits, and lowered IQ (CARB 2024f). Because emissions of lead are found only in projects that are permitted by SJVAPCD, lead is not an air quality of concern for the proposed project.

Table 2, *Criteria Air Pollutant Health Effects Summary*, summarizes the potential health effects associated with the criteria air pollutants.

Table 2 Criteria Air Pollutant Health Effects Summary

Pollutant	Health Effects	Examples of Sources
Carbon Monoxide (CO)	 Chest pain in heart patients Headaches, nausea Reduced mental alertness Death at very high levels 	Any source that burns fuel such as cars, trucks, construction and farming equipment, and residential heaters and stoves
Ozone (O ₃)	 Cough, chest tightness Difficulty taking a deep breath Worsened asthma symptoms Lung inflammation 	Atmospheric reaction of organic gases with nitrogen oxides in sunlight
Nitrogen Dioxide (NO2)	Increased response to allergensAggravation of respiratory illness	Same as carbon monoxide sources
Particulate Matter (PM_{10} and $PM_{2.5}$)	 Hospitalizations for worsened heart diseases Emergency room visits for asthma Premature death 	Cars and trucks (particularly diesels) Fireplaces and woodstoves Windblown dust from overlays, agriculture, and construction
Sulfur Dioxide (SO2)	 Aggravation of respiratory disease (e.g., asthma and emphysema) Reduced lung function 	Combustion of sulfur-containing fossil fuels, smelting of sulfur-bearing metal ores, and industrial processes
Lead (Pb)	 Behavioral and learning disabilities in children Nervous system impairment 	Contaminated soil

Toxic Air Contaminants

The public's exposure to air pollutants classified as toxic air contaminants (TACs) is a significant environmental health issue in California. In 1983, the California Legislature enacted a program to identify the health effects of TACs and to reduce exposure to these contaminants to protect the public health. The California Health and Safety Code defines a TAC as "an air pollutant which may cause or contribute to an increase in mortality or in serious illness, or which may pose a present or potential hazard to human health." A substance that is listed as a hazardous air pollutant (HAP) pursuant to Section 112(b) of the federal Clean Air Act (42 United States Code §7412[b]) is a toxic air contaminant. Under state law, the California Environmental Protection Agency (Cal/EPA), acting through CARB, is authorized to identify a substance as a TAC if it determines that the substance is an air pollutant that may cause or contribute to an increase in mortality or to an increase in serious illness, or may pose a present or potential hazard to human health.

California regulates TACs primarily through Assembly Bill (AB) 1807 (Tanner Air Toxics Act) and AB 2588 (Air Toxics "Hot Spot" Information and Assessment Act of 1987). The Tanner Air Toxics Act sets forth a formal procedure for CARB to designate substances as TACs. Once a TAC is identified, CARB adopts an "airborne toxics control measure" for sources that emit designated TACs. If there is a safe threshold for a substance (i.e., a point below which there is no toxic effect), the control measure must reduce exposure to below that threshold. If there is no safe threshold, the measure must incorporate toxics best available control technology to minimize emissions. To date, CARB has established formal control measures for 11 TACs, all of which are identified as having no safe threshold.

Air toxics from stationary sources are also regulated in California under the Air Toxics "Hot Spot" Information and Assessment Act of 1987. Under AB 2588, toxic air contaminant emissions from individual facilities are quantified and prioritized by the air quality management district or air pollution control district. High priority facilities are required to perform a health risk assessment and, if specific thresholds are exceeded, are required to communicate the results to the public in the form of notices and public meetings.

By the last update to the TAC list in December 1999, CARB had designated 244 compounds as TACs (CARB 1999). Additionally, CARB has implemented control measures for a number of compounds that pose high risks and show potential for effective control. The majority of the estimated health risks from TACs can be attributed to relatively few compounds, the most important being particulate matter from diesel-fueled engines.

Diesel Particulate Matter

In 1998, CARB identified particulate emissions from diesel-fueled engines (diesel PM) as a TAC. Previously, the individual chemical compounds in diesel exhaust were considered TACs. Almost all diesel exhaust particle mass is 10 microns or less in diameter. Because of their extremely small size, these particles can be inhaled and eventually trapped in the bronchial and alveolar regions of the lung.

CARB has promulgated the following specific rules to limit TAC emissions:

- 13 CCR Chapter 10, Section 2485, Airborne Toxic Control Measure to Limit Diesel-Fueled Commercial Motor Vehicle Idling
- 13 CCR Chapter 10, Section 2480, Airborne Toxic Control Measure to Limit School Bus Idling and Idling at Schools
- 13 CCR Section 2477 and Article 8, Airborne Toxic Control Measure for In-Use Diesel-Fueled Transport Refrigeration Units (TRU) and TRU Generator Sets and Facilities Where TRUs Operate

Community Risk

In addition, to reduce exposure to TACs, CARB developed and approved the *Air Quality and Land Use Handbook: A Community Health Perspective* (2005) to provide guidance regarding the siting of sensitive land uses in the vicinity of freeways, distribution centers, rail yards, ports, refineries, chrome-plating facilities, dry cleaners, and gasoline-dispensing facilities. This guidance document was developed to assess compatibility and associated health risks when placing sensitive receptors near existing pollution sources. CARB's recommendations on the siting of new sensitive land uses were based on a compilation of recent studies that evaluated data on the adverse health effects from proximity to air pollution sources. The key observation in these studies is that proximity to air pollution sources substantially increases exposure and the potential for adverse health risks from motor vehicle traffic, DPM from trucks, and benzene and 1,3-butadiene from passenger vehicles. CARB recommendations are based on data that show that localized air pollution exposures can be reduced by as much as 80 percent by following CARB minimum distance separations.

SAN JOAQUIN VALLEY AIR POLLUTION CONTROL DISTRICT

The primary role of SJVAPCD is to develop plans and implement control measures in the SJVAB to control air pollution. These controls primarily affect stationary sources such as industry and power plants. Rules and regulations have been developed by SJVAPCD to control air pollution from a wide range of air pollution sources. SJVAPCD also provides uniform procedures for assessing potential air quality impacts of projects and for preparing the air quality section of environmental documents.

Air Quality Management Planning

The US EPA requires states that have areas that do not meet the National AAQS to prepare and submit air quality plans showing how the National AAQS will be met. If the states cannot show how the National AAQS will be met, then the states must show progress toward meeting the National AAQS. These plans are referred to as the State Implementation Plans (SIP). CARB requires regions that do not meet California AAQS for ozone to submit clean air plans that describe measures to attain the standard or show progress toward attainment. The following describes the air quality management plans (AQMPs) prepared by the SJVAPCD, which are incorporated by reference per CEQA Guidelines Section 15150:

- 2022 Plan for the 2015 8-Hour Ozone Standard. SJVAPCD adopted the 2022 Plan for the 2015 8-hour ozone standard in December 2022. This plan satisfies CAA requirements and ensures expeditious attainment of the 70 parts per billion 8-hour ozone standard (SJVAPCD 2022).
- 2016 Plan for the 2008 8-Hour Ozone Standard. SJVAPCD adopted the 2016 Plan for the 2008 8-hour ozone standard in June 2016. This plan satisfies CAA requirements and ensures expeditious attainment of the 75 parts per billion 8-hour ozone standard (SJVAPCD 2016a).
- 2020 Reasonably Available Control Technology (RACT). SJVAPCD adopted the 2020 RACT Demonstration for the 2015 8-Hour Ozone Standard on June 18, 2020. San Joaquin Valley is classified as an Extreme nonattainment area for the 2015 O₃ standard. The 2020 RACT Demonstration includes a comprehensive evaluation of all NOx and ROG SJVAPCD rules to ensure that each rule meets or exceeds RACT (SJVAPCD 2020a).
- 2014 Reasonably Available Control Technology (RACT) SIP. SJVAPCD adopted the RACT demonstration for ozone SIP in June 2014 (SJVAPCD 2014).
- 2013 Plan for the Revoked 1-Hour Ozone Standard. SJVAPCD adopted the 2013 Plan for the Revoked 1-hour ozone standard in September 2013. In 2013, the Valley had zero violations of the 1-hour federal ozone standard. On May 6, 2014 and July 13, 2015 SJVAPCD submitted formal requests that the US EPA determine that the Valley has attained the federal 1-hour ozone standard. On July 18, 2016, the US EPA published in the Federal Register a final action determining that the San Joaquin Valley has attained the 1-hour ozone National AAQS (SJVAPCD 2013).
- 2009 Reasonably Available Control Technology (RACT) SIP. SJVAPCD adopted the RACT demonstration for ozone SIP in April 2009 (SJVAPCD 2009a).

- 2007 Ozone Plan. SJVAPCD adopted the 2007 Ozone Plan in April 2007. This plan addresses the US EPA's 8-hour ozone standard of 84 parts per billion (ppb), which was established by EPA in 1997 (SJVAPCD 2007a).
- 2015 8-hour ozone standard. The US EPA set the National AAQS for 8-hour ozone at 70 parts per billion (ppb) effective December 28, 2015. The US EPA designated the San Joaquin Valley as Extreme nonattainment for this standard in August 2018, with an attainment deadline of 2037. SJVACPD is mandated under federal CCA requirements to develop a new attainment plan for the revised ozone standard by 2022. Despite the significant air quality progress that has been made in the Valley, addressing the 2015 8-hour ozone standard will pose a challenge for the San Joaquin Valley given the naturally high background ozone levels and ozone transport into the Valley. Significant further emissions reductions will be needed to come into attainment of the stringent new standard. This will require concerted ongoing effort by the SJVAPCD working closely with Valley residents, businesses, and other stakeholders, to continue implementing effective and efficient air quality. The attainment plan for the 2015 federal ozone standard will build upon comprehensive strategies already in place from adopted SJVAPCD plans and CARB statewide strategies. The NOx reduction commitments from the recent 2018 PM_{2.5} Plan and 2016 Ozone Plan, and other ongoing measures will assist the Valley in meeting the 70 ppb federal ozone standard. Strategies for attainment of the 2015 8-hour ozone standard will be developed through a public process, building on decades of effective control strategies (SJVAPCD 2024b).
- 2018 Plan for the 1997, 2006, and 2012 PM_{2.5} Standards. SJVAPCD adopted the 2018 Plan for the 1997, 2006, and 2012 PM_{2.5} Standards on November 15, 2018. This plan addresses the US EPA federal 1997 annual PM_{2.5} standard of 15 μg/m³ and 24-hour PM_{2.5} standard of 65 μg/m³; the 2006 24-hour PM_{2.5} standard of 35 μg/m³; and the 2012 annual PM_{2.5} standard of 12 μg (SJVAPCD 2018).
- 2016 Moderate Area Plan for the 2012 PM_{2.5} Standard. SJVAPCD adopted the 2016 Moderate Area Plan for the 2012 PM_{2.5} standard on September 15, 2016. This plan addresses the US EPA federal annual PM_{2.5} standard of 12 μg/m3, established in 2012. This plan includes an attainment impracticability demonstration and request for reclassification of the Valley from Moderate nonattainment to Serious nonattainment (SJVAPCD 2016b; SJVAPCD 2024b).
- 2015 Plan for the 1997 PM_{2.5} Standard. SJVAPCD adopted the 2015 Plan for the 1997 PM_{2.5} standard on April 16, 2015. This plan addresses the US EPA's annual PM_{2.5} standard of 15 μg/m³ and 24-hour PM_{2.5} standard of 65 μg/m³, established in 1997 (SJVAPCD 2015a; SJVAPCD 2024b).
- 2012 PM_{2.5} Plan. SJVAPCD adopted the 2012 PM_{2.5} Plan in December 2012. This plan addresses the US EPA's 24-hour PM_{2.5} standard of 35 µg/m³, which was established by the US EPA in 2006 (SJVAPCD 2012; SJVAPCD 2024b).
- 2008 PM_{2.5} Plan. SJVAPCD adopted the 2008 PM_{2.5} Plan in April 2008. This plan addresses the US EPA's annual PM_{2.5} standard of 15 μg/m³, which was established by US EPA in 1997 (SJVAPCD 2008; SJVAPCD 2024b).

- Proposed 2024 Plan for the 2012 Annual PM_{2.5} Standard. SJVAPCD has drafted a 2024 PM_{2.5} Plan to meet serious nonattainment area requirements for the 2012 federal NAAQS for PM_{2.5}. CARB will consider adopting the 2024 PM2.5 Plan at its hearing on July 25, 2024 (SJVAPCD 2024a).
- 2007 PM₁₀ Maintenance Plan. SJVAPCD adopted the 2007 PM₁₀ Maintenance Plan in September 2007 to assure the San Joaquin Valley's continued attainment of the US EPA's PM₁₀ standard. The US EPA designated the Valley as an attainment/maintenance area for PM₁₀ (SJVAPCD 2007b; SJVAPCD 2024b).
- 2004 Revision to the California SIP for Carbon Monoxide. On July 22, 2004, CARB approved an update to the SIP that shows how the ten areas will maintain the standard through 2018, revises emission estimates, and establishes new on-road motor vehicle emission budgets for transportation conformity purposes (CARB 2004).

Applicable Rules

The SJVAPCD's primary means of implementing air quality plans is by adopting and enforcing rules and regulations. Stationary sources within the jurisdiction are regulated by the SJVAPCD's permit authority over such sources and through its review and planning activities. Unlike stationary source projects, which encompass very specific types of equipment, process parameters, throughputs, and controls, air emissions sources from land use development projects are mainly mobile sources (traffic) and area sources (small dispersed stationary and other non-mobile sources), including exempt (i.e., no permit required) sources such as consumer products, landscaping equipment, furnaces, and water heaters. Mixed-use land development projects may include nonexempt sources, including devices such as small to large boilers, stationary internal combustion engines, gas stations, and asphalt batch plants. Notwithstanding nonexempt stationary sources, which would be permitted on a case-by-case basis, the following SJVAPCD regulations generally apply to land use development projects and are described below.

Regulation IV – Prohibitions

- Rule 4102: Nuisance Prohibits discharge of air contaminants or other materials from any source which causes injury, detriment, nuisance, or annoyance to any considerable number of persons or to the public or which endanger the comfort, repose, health, or safety of any such person or the public or which cause or have a natural tendency to cause injury or damage to business or property.
- Rule 4601: Architectural Coatings The purpose of the rule is to limit VOC emissions from architectural coatings. This rule specifies architectural coatings storage, cleanup, and labeling requirements.
- Rule 4641: Cutback, Slow Cure, and Emulsified Asphalt, Paving and Maintenance Operations The purpose of this rule is to limit VOC emissions by restricting the application and manufacturing of certain types of asphalt for paving and maintenance operations.

Regulation VIII – Fugitive PM10 Prohibition

- Rule 8021: Construction, Demolition, Excavation, Extraction, and Other Earthmoving Activities

 The purpose of this rule is to limit fugitive dust emissions from construction, demolition, excavation, extraction, and other earthmoving activities. The rule outlines Dust Control Plan requirements for certain applicable construction activities.
- **Rule 8031: Bulk Materials** The purpose of the rule is to limit fugitive dust emissions from the outdoor handling, storage, and transport of bulk materials.
- Rule 8041: Carryout and Trackout The purpose of this rule is to prevent or limit fugitive dust emissions from carryout and trackout.
- Rule 8051: Open Areas The purpose of this rule is to limit fugitive dust emissions from open areas.
- Rule 8061: Paved and Unpaved Roads The purpose of this rule is to limit fugitive dust emissions from paved and unpaved roads by implementing control measures and design criteria.
- Rule 8071: Unpaved Vehicle/Equipment Traffic Areas The purpose of this rule is to limit fugitive dust emissions from unpaved vehicle and equipment traffic areas.

Regulation IX – Mobile and Indirect Sources

- Rule 9410: Employer Based Trip Reduction The purpose of this rule is to reduce vehicle miles traveled (VMT) from private vehicles used by employees to commute to and from their worksites to reduce emissions of oxides of nitrogen, volatile organic compounds, and particulate matter.
- Rule 9510: Indirect Source Review (ISR) The purpose of this rule is to fulfill the District's emission reduction commitments in the PM₁₀ and Ozone Attainment Plans, achieve emission reductions from the construction and use of development projects through design features and on-site measures, and provide a mechanism for reducing emissions from the construction of and use of development projects through off-site measures.

Existing Conditions

CLIMATE/METEOROLOGY

San Joaquin Valley Air Basin

The project site lies in the San Joaquin Valley Air Basin (SJVAB), which consists of eight counties and is spread across 25,000 square miles of Central California. The SJVAB is bordered on the east by the Sierra Nevada Mountains (8,000 to 14,491 feet in elevation), on the west by the Coast Ranges (averaging 3,000 feet in elevation), and to the south by the Tehachapi Mountains (6,000 to 7,981 feet in elevation). The San Joaquin Valley comprises the southern half of California's Central Valley and is approximately 250 miles long and

averages 35 miles wide, with a slight downward elevation gradient from Bakersfield in the southeast end (elevation 408 feet) to sea level at the northwest end where San Joaquin Valley opens to the San Francisco Bay at the Carquinez Strait. At its northern end is the Sacramento Valley, which comprises the northern half of California's Central Valley. The region's topographic features restrict air movement through and out of the SJVAB. As a result, the SJVAB is highly susceptible to pollutant accumulation over time (SJVAPCD 2015b).

Temperature and Precipitation

The San Joaquin Valley is in a Mediterranean Climate Zone, influenced by a subtropical high-pressure cell most of the year and characterized by warm, dry summers and cooler winters. Mediterranean climates are characterized by sparse rainfall, which occurs mainly in winter. Summertime maximum temperatures in San Joaquin Valley often exceed 100°F.

The vertical dispersion of air pollutants in the San Joaquin Valley can be limited by the presence of persistent temperature inversions. Air temperatures usually decrease with an increase in altitude in the troposphere. A reversal of this atmospheric state, where the air temperature increases with height, is termed an inversion. A temperature inversion can act like a lid, restricting vertical mixing of air above and below an inversion because of differences in air density and thereby trapping air pollutants below the inversion. The subtropical high-pressure cell is strongest during spring, summer, and fall and produces subsiding air, which can result in temperature inversions. Most of the surrounding mountains are above the normal height of summer inversions (1,500–3,000 feet). Wintertime high-pressure events can often last many weeks, with surface temperatures often lowering into the 30s°F. During these events, fog can be present, and inversions are extremely strong. These wintertime inversions can inhibit vertical mixing of pollutants to a few hundred feet (SJVAPCD 2015b).

Wind Patterns

Wind speed and direction play an important role in dispersion and transport of air pollutants. Winds in the San Joaquin Valley most frequently blow from the northwesterly direction, especially in the summer. The region's topographic features restrict air movement and channel the air mass toward the southeastern end of the San Joaquin Valley. Marine air can flow into the SJVAB from the Sacramento–San Joaquin River Delta and over Altamont Pass and Pacheco Pass, where it can flow through the San Joaquin Valley, over the Tehachapi Pass, into the Mojave Desert Air Basin. The Coastal Range and the Sierra Nevada are barriers to air movement to the west and east, respectively. A secondary but significant summer wind pattern is from the southeasterly direction and can be associated with nighttime drainage winds, prefrontal conditions, and summer monsoons. During winter, winds can be very weak, which minimizes the transport of pollutants and results in stagnation events.

Two significant diurnal wind cycles that occur frequently in San Joaquin Valley are the sea breeze and mountain valley upslope and drainage flows. The sea breeze can accentuate the northwest wind flow, especially on summer afternoons. Nighttime drainage flows can accentuate the southeast movement of air down the San Joaquin Valley. In the mountains during periods of weak synoptic scale winds, winds tend to be upslope during the day and downslope at night. Nighttime and drainage flows are pronounced during the winter when flow from the easterly direction is enhanced by nighttime cooling in the Sierra Nevada. Eddies

can form in the valley wind flow and can recirculate a polluted air mass for an extended period (SJVAPCD 2015b).

Temperature, Sunlight, and Ozone Production

Solar radiation and temperature are particularly important in the chemistry of ozone (O_3) formation. The SJVAB averages over 260 sunny days per year. Photochemical air pollution (primarily O_3) results from atmospheric reactive organic gases (ROGs) and nitrogen dioxide (NO_2) under the influence of sunlight. O_3 concentrations are very dependent on the amount of solar radiation, especially during late spring, summer, and early fall. O_3 levels typically peak in the afternoon. After the sun goes down, the chemical reaction between oxides of nitrogen (NO_x) and O_3 begins to dominate. This reaction tends to reduce O_3 concentrations in the metropolitan areas through the early morning hours. At sunrise, NOx tends to peak, partly due to low levels of O_3 at this time, and also due to the morning commuter vehicle emissions of NOx.

Reaction rates generally increase with temperature, which results in greater O_3 production at higher temperatures. However, extremely hot temperatures can "lift" or "break" the inversion layer. Typically, if the inversion layer remains intact, O_3 levels peak in the late afternoon. If the inversion layer breaks and the resultant afternoon winds occur, O_3 levels peak in the early afternoon and decrease in the late afternoon as the contaminants are dispersed or transported out of the SJVAB. O_3 levels are low during winter periods when there is much less sunlight to drive the photochemical reaction (SJVAPCD 2015b).

AREA DESIGNATIONS

The AQMP provides the framework for air quality basins to achieve attainment of the state and federal ambient air quality standards through the State Implementation Plan (SIP). Areas are classified as attainment or nonattainment areas for particular pollutants, depending on whether they meet ambient air quality standards. Severity classifications for ozone nonattainment range in magnitude from marginal, moderate, and serious to severe and extreme.

- Unclassified: a pollutant is designated unclassified if the data are incomplete and do not support a designation of attainment or nonattainment.
- Attainment: a pollutant is in attainment if the CAAQS for that pollutant was not violated at any site in the area during a three-year period.
- **Nonattainment:** a pollutant is in nonattainment if there was at least one violation of a state AAQS for that pollutant in the area.
- **Nonattainment/Transitional:** a subcategory of the nonattainment designation. An area is designated nonattainment/transitional to signify that the area is close to attaining the AAQS for that pollutant.

The attainment status for the SJVAB is shown in Table 3, Attainment Status of Criteria Pollutants in the San Joaquin Valley Air Basin.

Pollutant	State	Federal
Ozone – 1-hour	Severe Nonattainment	Revoked ⁴
Ozone – 8-hour	Nonattainment	Nonattainment/Extreme ³
PM ₁₀	Nonattainment	Attainment ¹
PM _{2.5}	Nonattainment	Nonattainment ²
СО	Attainment/Unclassified	Attainment/Unclassified
NO ₂	Attainment	Attainment/Unclassified
SO ₂	Attainment	Attainment/Unclassified
Lead	Attainment	No Designation/Classification
Sulfates	Attainment	No Federal Standard
Visibility Reducing Particles	Unclassified	No Federal Standard
Vinyl Chloride	Attainment	No Federal Standard

Table 3	Attainment Status of Criteria Pollutants in the South Coast Air Basin

Source: SJVAPCD 2024c.

On September 25, 2008, EPA redesignated the San Joaquin Valley to attainment for the PM10 National Ambient Air Quality Standard (NAAQS) and approved the 2007 PM10 Maintenance Plan.

² The Valley is designated nonattainment for the 1997 PM_{2.5} NAAQS. EPA designated the Valley as nonattainment for the 2006 PM_{2.5} NAAQS on November 13, 2009 (effective December 14, 2009)

³ Though the Valley was initially classified as serious nonattainment for the 1997 8-hour ozone standard, EPA approved Valley reclassification to extreme

nonattainment in the Federal Register on May 5, 2010 (effective June 4, 2010). ⁴ Effective June 15, 2005, the U.S. Environmental Protection Agency (EPA) revoked the federal 1-hour ozone standard, including associated designations and classifications. EPA had previously classified the District as extreme nonattainment for this standard. EPA approved the 2004 Extreme Ozone Attainment Demonstration Plan on March 8, 2010 (effective April 7, 2010). The District Governing Board adopted the 2023 Maintenance Plan and Redesignation Request and submitted to EPA in June of 2023. Although the standard is revoked, anti-backsliding provisions can be terminated upon final approval of the Maintenance Plan from EPA

EXISTING AMBIENT AIR QUALITY

Existing levels of ambient air quality and historical trends and projections in the vicinity of the project site are best documented by measurements taken by the SJVAPCD. The air quality monitoring station closest to the proposed project is the Porterville 1839 Newcomb Street station. Data from this station includes O_3 and PM2.5. Table 4, Ambient Air Quality Monitoring Summary.

Table 4	Ambient Air Quality Monitoring Summary
	Ambient All Quality Monitoring Summary

	Number of Days Threshold Were Exceeded and Maximum Levels during Such Violations ¹		
Pollutant/Standard	2020	2021	2022
Ozone (O ₃)			
State 1-Hour \geq 0.09 ppm (days exceed threshold)	7	9	1
State & Federal 8-hour \geq 0.070 ppm (days exceed threshold)	66	63	63
Max. 1-Hour Conc. (ppm)	0.116	0.106	0.099
Max. 8-Hour Conc. (ppm)	0.099	0.094	0.085
Fine Particulates (PM _{2.5})			
Federal 24-Hour > 35 µg/m ³ (days exceed threshold)	*	*	*
Max. 24-Hour Conc. (µg/m ³)	149.7	41.6	40.2
Source: CARB 2024h.		u.	
Notes: $ppm = parts per million; ppb = parts per billion; \mu g/m^3 = micrograms per cubic1 Most recent data available as of June 2024.$	meter; * = Data not available		
* Insufficient data available			

SENSITIVE RECEPTORS

Some land uses are considered more sensitive to air pollution than others due to the types of population groups or activities involved. Sensitive population groups include children, the elderly, the acutely ill, and the chronically ill, especially those with cardio-respiratory diseases.

Residential areas are also considered to be sensitive receptors to air pollution because residents (including children and the elderly) tend to be at home for extended periods of time, resulting in sustained exposure to any pollutants present. Schools are also considered sensitive receptors, as children are present for extended durations and engage in regular outdoor activities. Recreational land uses are considered moderately sensitive to air pollution. Although exposure periods are generally short, exercise places a high demand on respiratory functions, which can be impaired by air pollution. In addition, noticeable air pollution can detract from the enjoyment of recreation. Industrial and commercial areas are considered the least sensitive to air pollution. Exposure periods are relatively short and intermittent, as the majority of the workers tend to stay indoors most of the time. In addition, the working population is generally the healthiest segment of the public. In addition to the existing Santa Fe Elementary School campus, the nearest offsite sensitive receptor to the project site are the single-family residences on East Orange Avenue to the south and west of the project site.

Thresholds of Significance

CONSISTENCY WITH THE APPLICABLE AIR QUALITY PLAN

SJVAPCD has prepared plans to attain federal and State AAQS. The significance thresholds in Table 5, *SJVAPCD Regional Criteria Air Pollutants Significance Thresholds*, are based on SJVAPCD's New Source Review (NSR) offset requirements for stationary sources. Emission reductions achieved through implementation of SJVAPCD's offset requirements are a major component of SJVAPCD's air quality plans. Thus, projects with emissions below the thresholds of significance for criteria pollutants (see Table 1) would be determined to "not conflict or obstruct implementation of the [SJVAPCD's] air quality plan." Projects with emissions that exceed these values are considered to have the potential to exceed the AAQS, resulting in a potentially significant impact.

Air Pollutant	Construction and Operation Phase
Reactive Organic Gases (ROG)	10 tons/year
Carbon Monoxide (CO)	100 tons/year
Nitrogen Oxides (NOx)	10 tons/year
Sulfur Oxides (SOx)	27 tons/year
Coarse Particulates (PM10)	15 tons/year
Fine Particulates (PM _{2.5})	15 tons/year
Source: SJVAPCD 2015b	

 Table 5
 SJVAPCD Regional Criteria Air Pollutants Significance Thresholds

REGIONAL SIGNIFICANCE THRESHOLDS

As stated in Appendix G of the CEQA Guidelines, the significance criteria established by the applicable air quality management district may be relied on to make the above determinations. Thus, this analysis also evaluates the Specific Plan's air quality impacts pursuant to SJVAPCD's recommended guidelines and thresholds of significance, as discussed further below. SJVAPCD has developed the Guide for Assessing and Mitigating Air Quality Impacts (GAMAQI) and recently adopted the latest version on March 19, 2015 (SJVAPCD 2015b). The current GAMAQI represents the latest guidance for addressing air quality impacts in the SJVAB. Changes to the GAMAQI are primarily administrative in nature to update air basin information, attainment status, and general guidance to reflect updated conditions. The following thresholds of significance from the SJVAPCD's GAMAQI are used to determine whether a proposed project would result in a significant air quality impact.

GAMAQI presents a three-tiered approach to operational air quality analysis. The Small Project Analysis Level (SPAL) is first used to screen the project for potentially significant impacts. A project that meets the screening criteria at this level requires no further analysis and air quality impacts of the project may be deemed less than significant. If a project does not meet all the criteria at this screening level, additional screening is recommended at the Cursory Analysis Level and, if warranted, the Full Analysis Level (SJVAPCD 2020b).

In addition, the GAMAQI recommends that an ambient air quality analysis (AAQA) be conducted if the project exceeds the AAQA Analysis Screening Levels for Development Projects found in Table 4 of the GAMAQI, which identifies 9,000 square feet for educational uses. The GAMAQI further states that if the AAQA shows the project, after mitigation, generates on-site construction or operational emissions of any criteria pollutant exceeding 100 pounds per day, dispersion modeling should be prepared. While the proposed project is below the SPAL screening criteria, it is above the AAQA screening size criteria; therefore, air quality impacts are discussed qualitatively except for the AAQA which quantifies construction and operational emissions and compares them against the 100 lbs/day AAQA screening thresholds.

HEALTH RISK THRESHOLDS

School projects that use state funds are subject to Public Resources Code Section 21151.8 and Education Code Section 17213 pursuant to Title 5 requirements. These code sections require the preparation of a health risk assessment for state-funded school projects if freeways or other busy traffic corridors have been identified within 500 feet of a proposed school site. A busy traffic corridor is defined as having 50,000 or more average daily vehicle trips in a rural area or 100,000 or more average daily trips in an urban area. Additionally, these code sections also require school districts to identify facilities, including but not limited to freeways and other busy traffic corridors, large agricultural operations, and rail yards within one quarter-mile of a proposed school site that might reasonably be expected to emit hazardous air emissions.

Whenever a project would require use of chemical compounds that have been identified in SJVAPCD's Rule 2201, placed on CARB's air toxics list pursuant to Assembly Bill 1807 (AB 1807), Toxic Air Contaminant Identification and Control Act (1983), or placed on the US EPA's National Emissions Standards for Hazardous Air Pollutants, a health risk assessment is warranted. In addition, if a project would place sensitive

land uses proximate to major sources of TACs (roadways with over 50,000 vehicles per day or major stationary sources), a health risk assessment may also be warranted. As discussed, the project site is not located in proximity to any major sources of TAC's. Table 4, *SJVAPCD Toxic Air Contaminants Incremental Risk Thresholds*, lists the SJVAPCD's TAC incremental risk thresholds for operation of a project or placement of sensitive land uses proximate to major sources of air pollution. As stated, under the CBIA ruling, while CEQA is generally not required to analyze impacts of the environment on a project, where a project will exacerbate an existing environmental hazard, CEQA requires an analysis of the worsened condition on future project residents and the public at large. However, projects that do not generate emissions that exceed the values in Table 3 would not substantially contribute to cumulative air quality hazards or exacerbate an existing environmental hazard.

Risk Type	Threshold
Cancer Risk ¹	≥ 10 in 1 million
Hazard Index ²	≥ 1.0
Source: SJVAPCD 2015b ¹ For the Maximum Exposed Individuals (MEI). ² Ground-level concentrations of noncarcinogenic TACs for the MEI.	

Table 4 SJVAPCD Toxic Air Contaminants Incremental Risk Thresholds

ODOR

Odor impacts associated with a proposed project would be considered significant if the project has the potential to frequently expose members of the public to objectionable odors. There are two general scenarios where a project could expose people to substantial odors:

- Odor Generator. Projects that would potentially generate odorous emissions proposed to locate near existing sensitive receptors or other land uses where people may congregate.
- Odor Receiver. Residential or other sensitive receptor projects or other projects built for the intent of attracting people locating near existing odor sources.

Due to the subjective nature of odor impacts, the number of variables that can influence the potential for an odor impact, and the variety of odor sources, there are no quantitative or formulaic methodologies to determine if potential odors would have a significant impact. Rather, projects must be assessed on a case-by-case basis. As shown in Table 2, *SJVAPCD Screening Levels for Potential Odor Sources*, the SJVAPCD has identified buffer distances for common types of facilities that have been known to produce odors in the SJVAB. The degree of odors could be significant and may be based on a review of SJVAPCD's complaint records.

Table 2 33 VALOD Screening Levels for Fotential Oddi Source	
Land Use/Type of Operation	Screening Distance
Wastewater Treatment Plant	2 miles
Sanitary Landfill	1 mile

Table 2 SJVAPCD Screening Levels for Potential Odor Sources

Transfer Station	1 mile
Composting Facility	1 mile
Petroleum Refinery	2 miles
Asphalt Batch Plant	1 mile
Chemical Manufacturing	1 mile
Fiberglass Manufacturing	1 mile
Painting/Coating Operations	1 mile
Food Processing Facility	1 mile
Feed Lot/ Dairy	1 mile
Rendering Plant	1 mile
Source: SJVAPCD 2015b	

Table 2	SJVAPCD Screening Levels for Potential Odor Sources

For a project locating near an existing source of odors, in Califor*nia Building Industry Association v. Bay Area Air Quality Management District* (CBIA), the California Supreme Court ruled that CEQA generally does not require an evaluation of impacts of the environment on a project unless a project will exacerbate an existing environmental hazard.

CUMULATIVE IMPACTS

By its very nature, air pollution is largely a cumulative impact. The nonattainment status of regional pollutants is a result of past and present development. Future attainment of federal and State AAQS is a function of successful implementation of the SJVAPCD's attainment plans. Consequently, SJVAPCD's application of thresholds of significance for criteria pollutants is relevant to the determination of whether a project's individual emissions would have a cumulatively significant impact on air quality. Pursuant to the SJVAPCD's guidance, if project-specific emissions would be less than the thresholds of significance for criteria pollutants, the project would not be expected to result in a cumulatively considerable net increase of any criteria pollutant for which the SJVAPCD is in nonattainment under applicable federal or State AAQS.

GREENHOUSE GAS EMISSIONS

Scientists have concluded that human activities are contributing to global climate change by adding large amounts of heat-trapping gases, known as GHG, to the atmosphere. Climate change is the variation of Earth's climate over time, whether due to natural variability or as a result of human activities. The primary source of these GHG is fossil fuel use. The Intergovernmental Panel on Climate Change (IPCC) has identified four major GHG—water vapor,¹ carbon (CO₂), methane (CH₄), and ozone (O₃)—that are the likely cause of an increase in global average temperatures observed within the 20th and 21st centuries. Other GHG identified by the IPCC that contribute to global warming to a lesser extent include nitrous oxide (N₂O), sulfur

¹ Water vapor (H₂O) is the strongest GHG and the most variable in its phases (vapor, cloud droplets, ice crystals). However, water vapor is not considered a pollutant, but part of the feedback loop rather than a primary cause of change.

hexafluoride (SF₆), hydrofluorocarbons, perfluorocarbons, and chlorofluorocarbons (IPCC 2001).² The major GHG are briefly described below.

- **Carbon dioxide (CO₂)** enters the atmosphere through the burning of fossil fuels (oil, natural gas, and coal), solid waste, trees and wood products, and respiration, and also as a result of other chemical reactions (e.g. manufacture of cement). Carbon dioxide is removed from the atmosphere (sequestered) when it is absorbed by plants as part of the biological carbon cycle.
- Methane (CH₄) is emitted during the production and transport of coal, natural gas, and oil. Methane emissions also result from livestock and other agricultural practices and from the decay of organic waste in municipal landfills and water treatment facilities.
- Nitrous oxide (N₂O) is emitted during agricultural and industrial activities as well as during combustion of fossil fuels and solid waste.
- Fluorinated gases are synthetic, strong GHGs that are emitted from a variety of industrial processes. Fluorinated gases are sometimes used as substitutes for ozone-depleting substances. These gases are typically emitted in smaller quantities, but because they are potent GHGs, they are sometimes referred to as high global-warming-potential (GWP) gases.
 - *Chlorofluorocarbons (CFCs*) are GHGs covered under the 1987 Montreal Protocol and used for refrigeration, air conditioning, packaging, insulation, solvents, or aerosol propellants. Since they are not destroyed in the lower atmosphere (troposphere, stratosphere), CFCs drift into the upper atmosphere where, given suitable conditions, they break down ozone. These gases are also ozone-depleting gases and are therefore being replaced by other compounds that are GHGs covered under the Kyoto Protocol.
 - **Perfluorocarbons (PFCs)** are a group of human-made chemicals composed of carbon and fluorine only. These chemicals (predominantly perfluoromethane [CF₄] and perfluoroethane [C₂F₆]) were introduced as alternatives, along with HFCs, to the ozone-depleting substances. In addition, PFCs are emitted as by-products of industrial processes and are used in manufacturing. PFCs do not harm the stratospheric ozone layer, but they have a high global warming potential.
 - **Sulfur Hexafluotide (SF6)** is a colorless gas soluble in alcohol and ether, slightly soluble in water. SF6 is a strong GHG used primarily in electrical transmission and distribution systems as an insulator.

² Black carbon contributes to climate change both directly, by absorbing sunlight, and indirectly, by depositing on snow (making it melt faster) and by interacting with clouds and affecting cloud formation. Black carbon is the most strongly light-absorbing component of particulate matter (PM) emitted from burning fuels such as coal, diesel, and biomass. Reducing black carbon emissions globally can have immediate economic, climate, and public health benefits. California has been an international leader in reducing emissions of black carbon, with close to 95 percent control expected by 2020 due to existing programs that target reducing PM from diesel engines and burning activities (CARB 2017). However, state and national GHG inventories do not yet include black carbon due to ongoing work resolving the precise global warming potential of black carbon. Guidance for CEQA documents does not yet include black carbon.

- *Hydrochlorofluorocarbons (HCFCs)* contain hydrogen, fluorine, chlorine, and carbon atoms. Although ozone-depleting substances, they are less potent at destroying stratospheric ozone than CFCs. They have been introduced as temporary replacements for CFCs and are also GHGs.
- *Hydrofluorocarbons (HFCs)* contain only hydrogen, fluorine, and carbon atoms. They were introduced as alternatives to ozone-depleting substances to serve many industrial, commercial, and personal needs. HFCs are emitted as by-products of industrial processes and are also used in manufacturing. They do not significantly deplete the stratospheric ozone layer, but they are strong GHGs (IPCC 2001).

GHGs are dependent on the lifetime or persistence of the gas molecule in the atmosphere. Some GHGs have stronger greenhouse effects than others. These are referred to as high GWP gases. The GWP of GHG emissions are shown in Table 10, *GHG Emissions and Their Relative Global Warming Potential Compared to CO*₂. The GWP is used to convert GHGs to CO₂-equivalence (CO₂e) to show the relative potential that different GHGs have to retain infrared radiation in the atmosphere and contribute to the greenhouse effect. For example, under IPCC's Fifth Assessment Report (AR5) GWP values for CH₄, a project that generates 10 MT of CH₄ would be equivalent to 280 MT of CO₂.³

GHGs	Fourth Assessment Report (AR4) Global Warming Potential Relative to CO ₂ ¹	Fifth Assessment Report (AR5) Global Warming Potential Relative to CO21	Sixth Assessment Report (AR6) Global Warming Potential Relative to CO ₂ 1
Carbon Dioxide (CO ₂)	1	1	1
Methane ² (CH ₄)	25	28	30
Nitrous Oxide (N ₂ O)	298	265	273

Table 10 GHG Emissions and Their Relative Global Warming Potential Compared to CO₂

Source: IPCC 2007, 2013, and 2023.

Notes: The IPCC published updated GWP values in its Sixth Assessment Report (AR6) that reflect latest information on atmospheric lifetimes of GHGs and an improved calculation of the radiative forcing of CO₂. However, GWP values identified in AR5 are used by the 2022 Scoping Plan for long-term emissions forecasting.

Based on 100-year time horizon of the GWP of the air pollutant compared to CO2.

² The methane GWP includes direct effects and indirect effects due to the production of tropospheric ozone and stratospheric water vapor. The indirect effect due to the production of CO₂ is not included.

GHG Regulatory Setting

REGULATION OF GHG EMISSIONS ON A NATIONAL LEVEL

The US Environmental Protection Agency (EPA) announced on December 7, 2009, that GHG emissions threaten the public health and welfare of the American people and that GHG emissions from on-road vehicles contribute to that threat. The EPA's final findings respond to the 2007 U.S. Supreme Court decision that GHG emissions fit within the Clean Air Act definition of air pollutants. The findings do not in and of themselves impose any emission reduction requirements but allow the EPA to finalize the GHG standards proposed in 2009 for new light-duty vehicles as part of the joint rulemaking with the Department of Transportation (USEPA 2009).

³ The global warming potential of a GHG is dependent on the lifetime, or persistence, of the gas molecule in the atmosphere.

To regulate GHGs from passenger vehicles, EPA was required to issue an endangerment finding. The finding identifies emissions of six key GHGs—CO₂, CH₄, N₂O, hydrofluorocarbons, perfluorocarbons, and SF₆— that have been the subject of scrutiny and intense analysis for decades by scientists in the United States and around the world. The first three are applicable to the project's GHG emissions inventory because they constitute the majority of GHG emissions and are the GHG emissions that should be evaluated as part of a project's GHG emissions inventory.

US Mandatory Report Rule for GHGs (2009)

In response to the endangerment finding, the EPA issued the Mandatory Reporting of GHG Rule that requires substantial emitters of GHG emissions (large stationary sources, etc.) to report GHG emissions data. Facilities that emit 25,000 MT or more of CO₂ per year are required to submit an annual report.

Update to Corporate Average Fuel Economy Standards (2021 to 2026)

The federal government issued new Corporate Average Fuel Economy (CAFE) standards in 2012 for model years 2017 to 2025, which required a fleet average of 54.5 miles per gallon in 2025. On March 30, 2020, the EPA finalized an updated CAFE and GHG emissions standards for passenger cars and light trucks and established new standards covering model years 2021 through 2026, known as the Safer Affordable Fuel Efficient (SAFE) Vehicles Final Rule for Model Years 2021 to 2026. Under SAFE, the fuel economy standards will increase 1.5 percent per year compared to the 5 percent per year under the CAFE standards established in 2012. Overall, SAFE requires a fleet average of 40.4 MPG for model year 2026 vehicles (85 Federal Register 24174 (April 30, 2020)).

On December 21, 2021, under direction of Executive Order (EO) 13990 issued by President Biden, the National Highway Traffic Safety Administration repealed Safer Affordable Fuel Efficient Vehicles Rule Part One, which had preempted state and local laws related to fuel economy standards. In addition, on March 31, 2022, the National Highway Traffic Safety Administration finalized new fuel standards in response to EO 13990. Fuel efficiency under the standards proposed will increase 8 percent annually for model years 2024 to 2025 and 10 percent annual for model year 2026. Overall, the new CAFE standards require a fleet average of 49 MPG for passenger vehicles and light trucks for model year 2026, which would be a 10 MPG increase relative to model year 2021 (NHTSA 2022).

EPA Regulation of Stationary Sources under the Clean Air Act (Ongoing)

Pursuant to its authority under the Clean Air Act, the EPA has developed regulations for new, large, stationary sources of emissions, such as power plants and refineries. Under former President Obama's 2013 Climate Action Plan, the EPA was directed to develop regulations for existing stationary sources as well. On June 19, 2019, the EPA issued the final Affordable Clean Energy (ACE) rule, which became effective on August 19, 2019. The ACE rule was crafted under the direction of President Trump's Energy Independence EO. It officially rescinded the Clean Power Plan rule issued during the Obama Administration and set emissions guidelines for states in developing plans to limit CO₂ emissions from coal-fired power plants. The Affordable Clean Energy rule was vacated by the United States Court of Appeals for the District of Columbia Circuit on January 19, 2021. The Biden Administration is assessing options on potential future regulations.

REGULATION OF GHG EMISSIONS ON A STATE LEVEL

Current State of California guidance and goals for reductions in GHG emissions are generally embodied in EO S-03-05 and EO B-30-15, EO B-55-18, Assembly Bill 32 (AB 32), Senate Bill 32 (SB 32), and SB 375.

Executive Order S-3-05

Executive Order S-3-05, signed June 1, 2005. Executive Order S-3-05 set the following GHG reduction targets for the State:

- 2000 levels by 2010
- 1990 levels by 2020
- 80 percent below 1990 levels by 2050

Assembly Bill 32, the Global Warming Solutions Act (2006)

AB 32 was passed by the California state legislature on August 31, 2006, to place the state on a course toward reducing its contribution of GHG emissions. AB 32 follows the 2020 tier of emissions reduction targets established in EO S-03-05. CARB prepared the 2008 Scoping Plan to outline a plan to achieve the GHG emissions reduction targets of AB 32.

Executive Order B-30-15

EO B-30-15, signed April 29, 2015, set a goal of reducing GHG emissions within the state to 40 percent of 1990 levels by year 2030. EO B-30-15 also directed CARB to update the Scoping Plan to quantify the 2030 GHG reduction goal for the state and requires state agencies to implement measures to meet the interim 2030 goal as well as the long-term goal for 2050 in EO S-03-05. It also requires the Natural Resources Agency to conduct triennial updates of the California adaption strategy, "Safeguarding California", in order to ensure climate change is accounted for in state planning and investment decisions.

Senate Bill 32 and Assembly Bill 197

In September 2016, Governor Brown signed SB 32 and AB 197 into law, making the Executive Order goal for year 2030 into a statewide mandated legislative target. AB 197 established a joint legislative committee on climate change policies and requires the CARB to prioritize direction emissions reductions rather than the market-based cap-and-trade program for large stationary, mobile, and other sources.

Executive Order B-55-18

Executive Order B-55-18, signed September 10, 2018, set a goal "to achieve carbon neutrality as soon as possible, and no later than 2045, and achieve and maintain net negative emissions thereafter." Executive Order B-55-18 directs CARB to work with relevant state agencies to ensure that future Scoping Plans identify and recommend measures to achieve the carbon neutrality goal. The goal of carbon neutrality by 2045 is in addition to other statewide goals, meaning that not only should emissions be reduced to 80 percent below 1990 levels by 2050, but that, by no later than 2045, the remaining emissions should be offset by equivalent net removals of CO_2e from the atmosphere, including through sequestration in forests, soils, and other natural landscapes.

Assembly Bill 1279

AB 1279, signed by Governor Newsom in September 2022, codified the carbon neutrality targets of EO B-55-18 for year 2045 and sets a new legislative target for year 2045 of 85 percent below 1990 levels for anthropogenic GHG emissions. SB 1279 also requires CARB to update the Scoping Plan to address these new targets.

2022 Climate Change Scoping Plan

CARB adopted the 2022 Scoping Plan for Achieving Carbon Neutrality (2022 Scoping Plan) on December 15, 2022, which lays out a path to achieve carbon neutrality by 2045 or earlier and to reduce the State's anthropogenic GHG emissions (CARB 2022a). The Scoping Plan provides updates to the previously adopted 2017 Scoping Plan and addresses the carbon neutrality goals of EO B-55-18 (discussed below) and the ambitious GHG reduction target as directed by AB 1279. Previous Scoping Plans focused on specific GHG reduction targets for our industrial, energy, and transportation sectors—to meet 1990 levels by 2020, and then the more aggressive 40 percent below that for the 2030 target. The 2022 Scoping Plan updates the target of reducing anthropogenic emissions to 85 percent below 1990 levels by 2045. Carbon neutrality takes it one step further by expanding actions to capture and store carbon including through natural and working lands and mechanical technologies, while drastically reducing anthropogenic sources of carbon pollution at the same time.

The path forward was informed by the recent Sixth Assessment Report (AR6) of the IPCC and the measures would achieve 85 percent below 1990 levels by 2045 in accordance AB 1279. CARB's 2022 Scoping Plan identifies strategies as shown in Table 11, *Priority Strategies for Local Government Climate Action Plans*, that would be most impactful at the local level for ensuring substantial process towards the State's carbon neutrality goals.

Priority Area	Priority Strategies	
	Convert local government fleets to zero-emission vehicles (ZEV) and provide EV charging at public sites.	
Transportation Electrification	Create a jurisdiction-specific ZEV ecosystem to support deployment of ZEVs statewide (such as building standards that exceed state building codes, permit streamlining, infrastructure siting, consumer education, preferential parking policies, and ZEV readiness plans).	
	Reduce or eliminate minimum parking standards.	
	Implement Complete Streets policies and investments, consistent with general plan circulation element requirements.	
	Increase access to public transit by increasing density of development near transit, improving transit service by increasing service frequency, creating bus priority lanes, reducing or eliminating fares, microtransit, etc.	
VMT Reduction	Increase public access to clean mobility options by planning for and investing in electric shuttles, bike share, car share, and walking	
	Implement parking pricing or transportation demand management pricing strategies.	
	Amend zoning or development codes to enable mixed-use, walkable, transit-oriented, and compact infill development (such as increasing allowable density of the neighborhood).	
	Preserve natural and working lands by implementing land use policies that guide development toward	

Table 11	Priority Strategies for Local Government Climate Action Plans
----------	---

Table 11	Priority Strategies for Local Government Climate Action Plans
----------	---

Priority Area	Priority Strategies	
	infill areas and do not convert "greenfield" land to urban uses (e.g., green belts, strategic conservation easements)	
Building Decarbonization	Adopt all-electric new construction reach codes for residential and commercial uses.	
	Adopt policies and incentive programs to implement energy efficiency retrofits for existing buildings, such as weatherization, lighting upgrades, and replacing energy-intensive appliances and equipment with more efficient systems (such as Energy Star-rated equipment and equipment controllers).	
	Adopt policies and incentive programs to electrify all appliances and equipment in existing buildings such as appliance rebates, existing building reach codes, or time of sale electrification ordinances.	
	Facilitate deployment of renewable energy production and distribution and energy storage on privately owned land uses (e.g., permit streamlining, information sharing).	
	Deploy renewable energy production and energy storage directly in new public projects and on existing public facilities (e.g., solar photovoltaic systems on rooftops of municipal buildings and on canopies in public parking lots, battery storage systems in municipal buildings).	
Source: CARB 2022a.		

Based on Appendix D of the 2022 CARB Climate Change Scoping Plan, for residential and mixed-use development projects, CARB recommends first demonstrating that these land use development projects are aligned with State climate goals based on the attributes of land use development that reduce operational GHG emissions while simultaneously advancing fair housing. Attributes that accommodate growth in a manner consistent with the GHG and equity goals of SB 32 have all the following attributes:

- Transportation Electrification
 - Provide EV charging infrastructure that, at a minimum, meets the most ambitious voluntary standards in the California Green Building Standards Code at the time of project approval.
- VMT Reduction
 - Is located on infill sites that are surrounded by existing urban uses and reuses or redevelops previously undeveloped or underutilized land that is presently served by existing utilities and essential public services (e.g., transit, streets, water, sewer).
 - Does not result in the loss or conversion of the State's natural and working lands;
 - Consists of transit-supportive densities (minimum of 20 residential dwelling units/acre), or is in proximity to existing transit stops (within a half mile), or satisfies more detailed and stringent criteria specified in the region's Sustainable Communities Strategy (SCS);
 - Reduces parking requirements by:
 - Eliminating parking requirements or including maximum allowable parking ratios (i.e., the ratio of parking spaces to residential units or square feet); or
 - Providing residential parking supply at a ratio of <1 parking space per dwelling unit; or

- For multifamily residential development, requiring parking costs to be unbundled from costs to rent or own a residential unit.
- At least 20 percent of the units are affordable to lower-income residents;
- Result in no net loss of existing affordable units.
- Building Decarbonization
 - Use all electric appliances without any natural gas connections and does not use propane or other fossil fuels for space heating, water heating, or indoor cooking (CARB 2022a).

If the first approach to demonstrating consistency is not applicable (such as in the case of this school modernization project), the second approach to project-level alignment with state climate goals is to achieve net zero GHG emissions. The third approach to demonstrating project-level alignment with state climate goals is to align with GHG thresholds of significance, which many local air quality management (AQMDs) and air pollution control districts (APCDs) have developed or adopted (CARB 2022a).

Senate Bill 375

In 2008, SB 375, the Sustainable Communities and Climate Protection Act, was adopted to connect the GHG emissions reductions targets established in the 2008 Scoping Plan for the transportation sector to local land use decisions that affect travel behavior. Its intent is to reduce GHG emissions from light-duty trucks and automobiles (excludes emissions associated with goods movement) by aligning regional long-range transportation plans, investments, and housing allocations to local land use planning to reduce VMT and vehicle trips. Specifically, SB 375 required CARB to establish GHG emissions reduction targets for each of the 18 metropolitan planning organizations (MPO). The Tulare County Association of Governments (TCAG) is the MPO that serves Tulare County; it shares its borders with the County.

Pursuant to the recommendations of the Regional Transportation Advisory Committee, CARB adopted per capita reduction targets for each of the MPOs rather than a total magnitude reduction target. SCAG's targets are an 8 percent per capita reduction from 2005 GHG emission levels by 2020 and a 13 percent per capita reduction from 2005 GHG emission levels by 2035 (CARB 2010). The 2020 targets are smaller than the 2035 targets because a significant portion of the built environment in 2020 is defined by decisions that have already been made. In general, the 2020 scenarios reflect that more time is needed for large land use and transportation infrastructure changes. Most of the reductions in the interim are anticipated to come from improving the efficiency of the region's transportation network. The targets would result in 3 MMTCO₂e of reductions by 2020 and 15 MMTCO₂e of reductions by 2035. Based on these reductions, the passenger vehicle target in CARB's Scoping Plan (for AB 32) would be met (CARB 2010).

2017 Update to the SB 375 Targets

CARB is required to update the targets for the MPOs every eight years. CARB adopted revised SB 375 targets for the MPOs in March 2018. The updated targets became effective in October2018. All SCSs adopted after October 1, 2018, are subject to these new targets. CARB's updated SB 375 targets for the SCAG region were

an 8 percent per capita GHG reduction in 2020 from 2005 levels (unchanged from the 2010 target) and a 19 percent per capita GHG reduction in 2035 from 2005 levels (compared to the 2010 target of 13 percent) (CARB 2018).

The targets consider the need to further reduce VMT, as identified in the 2017 Scoping Plan Update (for SB 32), while balancing the need for additional and more flexible revenue sources to incentivize positive planning and action toward sustainable communities. Like the 2010 targets, the updated SB 375 targets are in units of "percent per capita" reductions in GHG emissions from automobiles and light trucks relative to 2005; this excludes reductions anticipated from implementation of state technology and fuels strategies and any potential future state strategies, such as statewide road user pricing. The proposed targets call for greater percapita GHG emission reductions from SB 375 than are currently in place, which for 2035 translate into proposed targets that either match or exceed the emission reduction levels in the MPOs' currently adopted SCSs to achieve the SB 375 targets. CARB foresees that the additional GHG emissions reductions in 2035 may be achieved from land use changes, transportation investment, and technology strategies (CARB 2018).

Tulare County Association of Governments

The Tulare County Association of Governments adopted the 2018 Regional Transportation Plan/Sustainable Communities Strategy (RTP/SCS) on August 20, 2018. The RTP/SCS is comprehensive in its response to new federal statues embodies in the Moving Ahead for Progress in the 21st Century and state statutes, including SB 375. The RTP/SCS continues to provide a sustainability vision through 2042 that recognizes the significant impact the transportation network has on the region's public health, mobility, and economic vitality. As the region's comprehensive long-range transportation planning document, the RTP/SCS serves as a guide for achieving public policy decisions that will result in balanced investments for a wide range of multimodal transportation improvements. The Tulare County Association of Governments has released a draft of its 2022 RTP/SCS (TCAG 2022).

Transportation Sector Specific Regulations

Assembly Bill 1493

California vehicle GHG emission standards were enacted under AB 1493 (Pavley I). Pavley I is a clean-car standard that reduces GHG emissions from new passenger vehicles (light-duty auto to medium-duty vehicles) from 2009 through 2016 and is anticipated to reduce GHG emissions from new passenger vehicles by 30 percent in 2016. California implements the Pavley I standards through a waiver granted to California by the EPA. In 2012, the EPA issued a Final Rulemaking that sets even more stringent fuel economy and GHG emissions standards for model years 2017 through 2025 light-duty vehicles. (See also the discussion on the update to the Corporate Average Fuel Economy standards at the beginning of this Section 5.5.2 under "Federal.") In January 2012, CARB approved the Advanced Clean Cars program (formerly known as Pavley II) for model years 2017 through 2025. The program combines the control of smog, soot, and GHGs with requirements for greater numbers of ZE vehicles into a single package of standards. Under California's Advanced Clean Car program, by 2025 new automobiles will emit 34 percent less GHG emissions and 75 percent less smog-forming emissions.

Executive Order S-01-07

On January 18, 2007, the state set a new LCFS for transportation fuels sold in the state. Executive Order S-01-07 sets a declining standard for GHG emissions measured in CO₂e gram per unit of fuel energy sold in California. The LCFS required a reduction of 2.5 percent in the carbon intensity of California's transportation fuels by 2015 and a reduction of at least 10 percent by 2020. The standard applies to refiners, blenders, producers, and importers of transportation fuels, and uses market-based mechanisms to allow these providers to choose how they reduce emissions during the "fuel cycle" using the most economically feasible methods.

Executive Order B-16-2012

On March 23, 2012, the state identified that CARB, the California Energy Commission (CEC), the Public Utilities Commission, and other relevant agencies worked with the Plug-in Electric Vehicle Collaborative and the California Fuel Cell Partnership to establish benchmarks to accommodate ZE vehicles in major metropolitan areas, including infrastructure to support them (e.g., electric vehicle charging stations). The executive order also directed the number of ZE vehicles in California's state vehicle fleet to increase through the normal course of fleet replacement so that at least 10 percent of fleet purchases of light-duty vehicles are ZE by 2015 and at least 25 percent by 2020. The executive order also establishes a target for the transportation sector of reducing GHG emissions to 80 percent below 1990 levels.

Executive Order N-79-20

On September 23, 2020, Governor Newsom signed Executive Order N-79-20, whose goal is that 100 percent of in-state sales of new passenger cars and trucks will be ZE by 2035. Additionally, the fleet goals for trucks are that 100 percent of drayage trucks are ZE by 2035, and 100 percent of medium- and heavy-duty vehicles in the state are ZE by 2045, where feasible. The Executive Order's goal for the State is to transition to 100 percent ZE off-road vehicles and equipment by 2035, where feasible.

Renewables Portfolio: Carbon Neutrality Regulations

Senate Bills 1078, 107, and X1-2 and Executive Order S-14-08

A major component of California's Renewable Energy Program is the renewables portfolio standard established under Senate Bills 1078 (Sher) and 107 (Simitian). Under the RPS, certain retail sellers of electricity were required to increase the amount of renewable energy each year by at least 1 percent in order to reach at least 20 percent by December 30, 2010. Executive Order S-14-08, signed in November 2008, expanded the state's renewable energy standard to 33 percent renewable power by 2020. This standard was adopted by the legislature in 2011 (SB X1-2). Renewable sources of electricity include wind, small hydropower, solar, geothermal, biomass, and biogas. The increase in renewable sources for electricity production will decrease indirect GHG emissions from development projects because electricity production from renewable sources is generally considered carbon neutral.

Senate Bill 350

Senate Bill 350 (de Leon) was signed into law September 2015 and establishes tiered increases to the RPS—40 percent by 2024, 45 percent by 2027, and 50 percent by 2030. SB 350 also set a new goal to double the energy-efficiency savings in electricity and natural gas through energy efficiency and conservation measures.

Senate Bill 100

On September 10, 2018, Governor Brown signed SB 100. Under SB 100, the RPS for public-owned facilities and retail sellers consist of 44 percent renewable energy by 2024, 52 percent by 2027, and 60 percent by 2030. SB 100 also established a new RPS requirement of 50 percent by 2026. Furthermore, the bill establishes an overall state policy that eligible renewable energy resources and zero-carbon resources supply 100 percent of all retail sales of electricity to California end-use customers and 100 percent of electricity procured to serve all state agencies by December 31, 2045. Under the bill, the state cannot increase carbon emissions elsewhere in the western grid or allow resource shuffling to achieve the 100 percent carbon-free electricity target.

Energy Efficiency Regulations

California Building Code: Building Energy Efficiency Standards

Energy conservation standards for new residential and nonresidential buildings were adopted by the California Energy Resources Conservation and Development Commission (now the CEC) in June 1977 (Title 24, Part 6, of the California Code of Regulations [CCR]). Title 24 requires the design of building shells and building components to conserve energy. The standards are updated periodically to allow for consideration and possible incorporation of new energy efficiency technologies and methods.

On August 11, 2021, the CEC adopted the 2022 Building Energy Efficiency Standards, which were subsequently approved by the California Building Standards Commission in December 2021. The 2022 standards went into effect on January 1, 2023, replacing the existing 2019 standards. The 2022 standards would require mixed-fuel single-family homes to be electric-ready to accommodate replacement of gas appliances with electric appliances. In addition, the new standards also include prescriptive photovoltaic system and battery requirements for high-rise, multifamily buildings (i.e., more than three stories) and noncommercial buildings such as hotels, offices, medical offices, restaurants, retail stores, schools, warehouses, theaters, and convention centers (CEC 2021).

California Building Code: CALGreen

On July 17, 2008, the California Building Standards Commission adopted the nation's first green building standards. The California Green Building Standards Code (24 CCR, Part 11, known as "CALGreen") was adopted as part of the California Building Standards Code. CALGreen established planning and design standards for sustainable site development, energy efficiency (in excess of the California Energy Code requirements), water conservation, material conservation, and internal air contaminants.⁴ The mandatory

⁴ The green building standards became mandatory in the 2010 edition of the code.

provisions of CALGreen became effective January 1, 2011. In 2021, the CEC approved the 2022 CALGreen, which went into effect on January 1, 2023, replacing the existing 2019 standards.

2006 Appliance Efficiency Regulations

The 2006 Appliance Efficiency Regulations (20 CCR §§ 1601–1608) were adopted by the CEC on October 11, 2006, and approved by the California Office of Administrative Law on December 14, 2006. The regulations include standards for both federally regulated appliances and non–federally regulated appliances. Though these regulations are now often viewed as "business as usual," they exceed the standards imposed by all other states, and they reduce GHG emissions by reducing energy demand.

Solid Waste Diversion Regulations

AB 939: Integrated Waste Management Act of 1989

California's Integrated Waste Management Act of 1989 (AB 939, Public Resources Code §§ 40050 et seq.) set a requirement for cities and counties throughout the state to divert 50 percent of all solid waste from landfills by January 1, 2000, through source reduction, recycling, and composting. In 2008, the requirements were modified to reflect a per capita requirement rather than tonnage. To help achieve this, the act requires that each city and county prepare and submit a source reduction and recycling element. AB 939 also established the goal for all California counties to provide at least 15 years of ongoing landfill capacity.

AB 341

AB 341 (Chapter 476, Statutes of 2011) increased the statewide goal for waste diversion to 75 percent by 2020 and requires recycling of waste from commercial and multifamily residential land uses. Section 5.408 of CALGreen also requires that at least 65 percent of the nonhazardous construction and demolition waste from nonresidential construction operations be recycled and/or salvaged for reuse.

AB 1327

The California Solid Waste Reuse and Recycling Access Act (AB 1327, Public Resources Code §§ 42900 et seq.) requires areas to be set aside for collecting and loading recyclable materials in development projects. The act required the California Integrated Waste Management Board to develop a model ordinance for adoption by any local agency requiring adequate areas for collection and loading of recyclable materials as part of development projects. Local agencies are required to adopt the model or an ordinance of their own.

AB 1826

In October of 2014, Governor Brown signed AB 1826 requiring businesses to recycle their organic waste on and after April 1, 2016, depending on the amount of waste they generate per week. This law also requires that on and after January 1, 2016, local jurisdictions across the state implement an organic waste recycling program to divert organic waste generated by businesses and multifamily residential dwellings with five or more units. Organic waste means food waste, green waste, landscape and pruning waste, nonhazardous wood waste, and food-soiled paper waste that is mixed with food waste.

Water Efficiency Regulations

SBX7-7

The 20x2020 Water Conservation Plan was issued by the Department of Water Resources (DWR) in 2010 pursuant to Senate Bill 7, which was adopted during the 7th Extraordinary Session of 2009–2010 and therefore dubbed "SBX7-7." SBX7-7 mandated urban water conservation and authorized the DWR to prepare a plan implementing urban water conservation requirements (20x2020 Water Conservation Plan). In addition, it required agricultural water providers to prepare agricultural water management plans, measure water deliveries to customers, and implement other efficiency measures. SBX7-7 required urban water providers to adopt a water conservation target of 20 percent reduction in urban per capita water use by 2020 compared to 2005 baseline use.

AB 1881: Water Conservation in Landscaping Act

The Water Conservation in Landscaping Act of 2006 (AB 1881) requires local agencies to adopt the updated DWR model ordinance or an equivalent. AB 1881 also requires the CEC to consult with the DWR to adopt, by regulation, performance standards and labeling requirements for landscape irrigation equipment, including irrigation controllers, moisture sensors, emission devices, and valves to reduce the wasteful, uneconomic, inefficient, or unnecessary consumption of energy or water.

Short-Lived Climate Pollutant Reduction Strategy

Senate Bill 1383

On September 19, 2016, the Governor signed SB 1383 to supplement the GHG reduction strategies in the Scoping Plan to consider short-lived climate pollutants, including black carbon and CH₄. Black carbon is the light-absorbing component of fine particulate matter produced during the incomplete combustion of fuels. SB 1383 required the state board, no later than January 1, 2018, to approve and begin implementing a comprehensive strategy to reduce emissions of short-lived climate pollutants to achieve a reduction in methane by 40 percent, hydrofluorocarbon gases by 40 percent, and anthropogenic black carbon by 50 percent below 2013 levels by 2030. The bill also established targets for reducing organic waste in landfills. On March 14, 2017, CARB adopted the Short-Lived Climate Pollutant Reduction Strategy, which identifies the state's approach to reducing anthropogenic and biogenic sources of short-lived climate pollutants. Anthropogenic sources of black carbon include on- and off-road transportation, residential wood burning, fuel combustion (charbroiling), and industrial processes. According to CARB, ambient levels of black carbon in California are 90 percent lower than in the early 1960s, despite the tripling of diesel fuel use (CARB 2017). In-use on-road rules were expected to reduce black carbon emissions from on-road sources by 80 percent between 2000 and 2020.

CALIFORNIA'S GREENHOUSE GAS SOURCES AND RELATIVE CONTRIBUTION

In 2022, the statewide GHG emissions inventory was updated for 2000 to 2020 emissions using the GWPs in IPCC's AR4, and reported that California produced 369.2 MMTCO₂e GHG emissions in 2020 (CARB 2022b), which was 35.3 MMTCO₂e lower than 2019 levels and 61.8 MMTCO₂e below the 2020 GHG Limit of 431 MMTCO₂e. The 2019 to 2020 decrease in emissions is likely due in large part to the impacts of the

COVID-19 pandemic. However, since the peak level in 2004, California's GHG emissions have generally followed a decreasing trend. In 2014, statewide GHG emissions dropped below the 2020 GHG Limit and have remained below the Limit since that time. Per capita GHG emissions in California have dropped from a 2001 peak of 13.8 metric tons per person to 9.3 metric tons per person in 2020, a 33-percent decrease (CARB 2022b).

California's transportation sector remains the largest generator of GHG emissions, producing 37 percent of the state's total emissions in 2020. Industrial sector emissions made up 20 percent and electric power generation made up 16 percent of the state's emissions inventory. Other major sectors of GHG emissions include commercial and residential (4 percent), agriculture and forestry (8.6 percent), high-GWP gases (5.8 percent), and recycling and waste (2 percent) (CARB 2022b).

Transportation emissions continued to decline for the past three consecutive years with the rise of fuel efficiency for the passenger vehicle fleet and an increase in battery electric vehicles. The deployment of renewable and less carbon-intensive resources and higher energy efficiency standards have facilitated the continuing decline in fossil fuel electricity generation. The industrial sector trend has been relatively flat in recent years but saw a decrease of 7.1 MMTCO₂e in 2020. Commercial and residential emissions saw a decrease of 1.7 MMTCO₂e. Emissions from high-GWP gases have continued to increase as they replace ozone depleting substance (ODS) that are being phased out under the 1987 Montreal Protocol. Emissions from other sectors have remained relatively constant in recent years. Overall trends in the inventory also continue to demonstrate that the carbon intensity of California's economy (i.e., the amount of carbon pollution per million dollars of gross domestic product [GDP]) is declining. From 2000 to 2020, the carbon intensity of California's economy decreased by 49 percent while the GDP increased by 56 percent (CARB 2022b).

Thresholds of Significance

The CEQA Guidelines recommend that a lead agency consider the following when assessing the significance of impacts from GHG emissions on the environment:

- 1. The extent to which the project may increase (or reduce) GHG emissions as compared to the existing environmental setting;
- 2. Whether the project emissions exceed a threshold of significance that the lead agency determines applies to the project;
- 3. The extent to which the project complies with regulations or requirements adopted to implement an adopted statewide, regional, or local plan for the reduction or mitigation of GHG emissions.⁵

⁵ The Governor's Office of Planning and Research recommendations include a requirement that such a plan must be adopted through a public review process and include specific requirements that reduce or mitigate the project's incremental contribution of GHG emissions. If there is substantial evidence that the possible effects of a particular project are still cumulatively considerable, notwithstanding compliance with the adopted regulations or requirements, an EIR must be prepared for the project.

SAN JOAQUIN VALLEY AIR POLLUTION CONTROL DISTRICT

The issue of global climate change is, by definition, a cumulative environmental impact. The SJVAPCD adopted Guidance Methodology for addressing GHG emissions under CEQA on December 17, 2009 (SJVAPCD 2009a). In addition, SJVAPCD adopted a Climate Change Action Plan (CCAP) to identify strategies to reduce GHG emissions in the SJVAPCD. SJVAPCD's methodology includes a tiered approach:

- If a project is exempt from CEQA, individual-level and cumulative GHG emissions are treated as less than significant.
- If the project complies with a GHG emissions reduction plan or mitigation programs that avoid or substantially reduce GHG emissions in the geographic area where the project is located (i.e., city or county), individual-level and cumulative GHG emissions are treated as less than significant.
- SJVAPCD does not have thresholds of significance for construction-related GHG emissions. Construction emissions are one-time, nonrecurring emissions. For buildings in general, it is reasonable to look at a 30-year time frame, since this is a typical interval before a new building requires its first major renovation. Therefore, construction emissions are amortized over a 30-year duration and included in the operational emissions analysis.

SJVAPCD's methodology for evaluating GHG emissions impacts also includes methodology to evaluate whether a project would comply with AB 32 by conducting an analysis of whether the project would reduce GHG emissions by 29 percent from business as usual (BAU) through implementation of Best Performance Standards. The November 30, 2015, *Center for Biological Diversity v. California Department of Fish and Wildlife* (Newhall Ranch) ruling effectively limits use of this performance metric. The 29 percent below BAU established in the CARB Scoping Plan is derived from the statewide reduction target set by AB 32 for year 2020. The court held that the 29 percent is the statewide goal, but there is no substantial evidence that establishes a nexus between the Statewide goal and the percent reduction a specific land use project would need to achieve to be consistent with the goals of AB 32. Projects must determine the reduction target specific to the land use type being proposed. Because SJVAPCD's significance criteria does not establish a nexus that connects the statewide GHG emissions reductions identified in the Scoping Plan to reductions needed for new development projects, an alternative approach to use of the performance metric is being used by the District until SJVAPCD revises their Guidance Methodology to address the Newhall Ranch ruling.

2022 SCOPING PLAN CONSISTENCY

Because SJVAPCD's significance criteria does not establish a nexus that connects the statewide GHG emissions reductions identified in the Scoping Plan to GHG reductions needed for new development projects, an alternative approach to use of the performance metric is being used by the District until SJVAPCD revises their Guidance Methodology to address the Newhall Ranch ruling. The Best Management Practices (BMPs) approach, based on 2022 Scoping Plan, requires a project to evaluate consistency of the project with three primary objectives of the 2022 Scoping Plan: transportation electrification, VMT reduction, and building decarbonization. In accordance with the updated BMP approach to evaluating GHG

impacts, projects would be determined to have less than significant impacts if they are: 1) determined consistent with a local qualified GHG reduction strategy (i.e., Climate Action Plan) via CEQA Guidelines Section 15183.5, or 2) designed to be 100 percent electric (no natural gas), provide electric vehicle charging spaces in conformance with the voluntary Tier 2 standards of the California Green Building Standards Code (CALGreen), and are consistent with locally adopted VMT thresholds.

BIBLIOGRAPHY

- California Air Resources Board (CARB). 1999. California Air Resources Board (CARB). Final Staff Report: Update to the Toxic Air Contaminant List.
- - ——. 2016, October 1. Ambient Air Quality Standards. https://ww2.arb.ca.gov/sites/default/files/2020-07/aaqs2.pdf.
- ———. 2017, March 14. Final Proposed Short-Lived Climate Pollutant Reduction Strategy. https://ww2.arb.ca.gov/sites/default/files/2018-12/final_slcp_report%20Final%202017.pdf.
- 2018, February. Proposed Update to the SB 375 Greenhouse Gas Emission Reduction Targets. https://ww2.arb.ca.gov/sites/default/files/2020-06/SB375_Updated_Final_Target_Staff_Report_2018.pdf.
- ———. 2022b, October 26. California Greenhouse Gas 2000-2020 Trends of Emissions and Other Indicators Report. https://ww2.arb.ca.gov/sites/default/files/classic/cc/inventory/2000-2020_ghg_inventory_trends.pdf.
- ———. 2024a, June 17 (accessed). Carbon Monoxide & Health. https://ww2.arb.ca.gov/resources/carbonmonoxide-and-health
- ——. 2024b, June 17(accessed). Nitrogen Dioxide & Health. https://ww2.arb.ca.gov/resources/nitrogendioxide-and-health
- ——. 2024c, June 17 (accessed). Sulfur Dioxide & Health. https://ww2.arb.ca.gov/resources/sulfurdioxide-andhealth#:~:text=Effects%20at%20levels%20near%20the,during%20exercise%20or%20physical%20a ctivity.
- 2024d, June 17 (accessed). Inhalable Particulate Matter and Health (PM2.5 and PM10). https://ww2.arb.ca.gov/resources/inhalable-particulate-matter-andhealth#:~:text=Research%20from%20the%20CARB%2Dinitiated,5%20levels.
 - —. 2024e, June 17 (accessed). Ozone and Health. https://ww2.arb.ca.gov/sites/default/files/2017-10/ozone-fs.pdf

- —. 2024f, June 17 (accessed). Lead & Health. https://ww2.arb.ca.gov/resources/lead-and-health#:~:text=Lead%20poisoning%20can%20cause%20reproductive,result%20in%20cancer%20in %20adults.
- ——. 2024g, June 17 (accessed). Common Air Pollutants. https://ww2.arb.ca.gov/resources/common-air-pollutants.
- ------. 2024h, June 17 (accessed). Air Pollution Data Monitoring Cards (2020, 2021, and 2022). https://www.arb.ca.gov/adam/topfour/topfour1.php.
- California Energy Commission (CEC). 2021, May 19. Amendments to the Building Energy Efficiency Standards (2022 Energy Code) Draft Environmental Report. CEC-400-2021-077-D.
- Intergovernmental Panel on Climate Change (IPCC). 2001. Third Assessment Report: Climate Change 2001. New York: Cambridge University Press. https://www.ipcc.ch/site/assets/uploads/2018/03/WGI_TAR_full_report.pdf.
 - ———. 2007. Fourth Assessment Report: Climate Change 2007. New York: Cambridge University Press. https://www.ipcc.ch/site/assets/uploads/2018/02/ar4_syr_full_report.pdf.
 - ———. 2013. Fifth Assessment Report: Climate Change 2013. New York: Cambridge University Press. https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_all_final.pdf.
- ———. 2023. Sixth Assessment Report: Climate Change 2022. New York: Cambridge University Press. https://www.ipcc.ch/assessment-report/ar6/.
- National Highway Traffic Safety Administration (NHTSA). 2022, April 1. USDOT Announces New Vehicle Fuel Economy Standards for Model year 2024-2026. https://www.nhtsa.gov/press-releases/usdotannounces-new-vehicle-fuel-economy-standards-model-year-2024-2026.
- San Joaquin Valley Air Pollution Control District (SJVAPCD). 2007a, April 30. 2007 Ozone Plan. https://ww2.valleyair.org/rules-and-planning/air-quality-plans/ozone-plans/2007-plan-for-the-1997-8-hour-ozone-standard/
 - ———. 2007b, September 20. 2007 PM10 Maintenance Plan and Request for Redesignation. http://www.valleyair.org/Air_Quality_Plans/docs/Maintenance%20Plan10-25-07.pdf
 - ------. 2008. PM2.5 Plan. http://www.valleyair.org/Air_Quality_Plans/AQ_Final_Adopted_PM25_2008.htm
 - ———. 2009a, April 16. 2009 Reasonably Available Control Technology (RACT) Demonstration for the 8-Hour Ozone State Implementation Plan (SIP). http://valleyair.org/Air_Quality_Plans/docs/RACTSIP-2009.pdf
 - ------. 2009b, December 17. District Policy- Addressing GHG Emission Impacts for Stationary Source Projects Under CEQA When Serving as the Lead Agency.

https://www.valleyair.org/Programs/CCAP/12-17-09/2%20CCAP%20-%20FINAL%20District%20Policy%20CEQA%20GHG%20-%20Dec%2017%202009.pdf

- ------. 2012, December 20. 2012 PM2.5 Plan. http://www.valleyair.org/Air_Quality_Plans/PM25Plan2012/CompletedPlanbookmarked.pdf
- ——. 2013. September 19. 2013 Plan for the Revoked 1-Hour Ozone Standard. http://valleyair.org/Air_Quality_Plans/OzoneOneHourPlan2013/AdoptedPlan.pdf
- ------. 2015a, April 16. 2015 Plan for the 1997 PM2.5 Standard. http://www.valleyair.org/Air_Quality_Plans/docs/PM25-2015/2015-PM2.5-Plan_Bookmarked.pdf
- ------. 2015b, March 19. Guidance for Assessing and Mitigating Air Quality Impacts. http://www.valleyair.org/transportation/GAMAQI_3-19-15.pdf
- ------. 2016a, June 16. 2016 Ozone Plan for 2008 8-Hour Ozone Standard. http://valleyair.org/Air_Quality_Plans/Ozone-Plan-2016/Adopted-Plan.pdf
 - ——. 2016b, September 15. 2016 Moderate Area Plan for the 2012 PM2.5 Standard. http://www.valleyair.org/Air_Quality_Plans/docs/PM25-2016/2016-Plan.pdf
- ——. 2018. November 15. 2018 Plan for the 1997, 2006, and 2013 PM 2.5 Standards. http://valleyair.org/pmplans/documents/2018/pm-plan-adopted/2018-Plan-for-the-1997-2006and-2012-PM2.5-Standards.pdf
- ——. 2020a. 2020 Reasonably Available Control Technology (RACT) Demonstration for the 2015 8-Hour Ozone Standard. https://ww2.valleyair.org/media/3xrdxpvl/2020-ract-demonstration.pdf
- ——. 2020b, November 13. Small Project Analysis Levels (SPAL). https://www.valleyair.org/transportation/CEQA%20Rules/GAMAQI-SPAL.PDF
- ——. 2022, December. 2022 Plan for the 2015 8-Hour Ozone Standard. https://ww2.valleyair.org/media/q55posm0/0000-2022-plan-for-the-2015-8-hour-ozone-standard.pdf
- ——. 2024a, June. 2024 Plan for the 2012 Annual PM2.5 Standard. https://ww2.valleyair.org/media/rukeslwd/proposed-2024-pm25-plan.pdf
- ——. 2024b, June 17 (Accessed). Frequently Asked Questions. http://www.valleyair.org/general_info/frequently_asked_questions.htm#What%20is%20being%20d one%20to%20improve%20air%20quality%20in%20the%20San%20Joaquin%20Valley

—. 2024c, June 17 (Accessed). Ambient Air Quality Standards & Valley Attainment Status. https://www.valleyair.org/aqinfo/attainment.htm

- Tulare County. 2022, August. 2022 Regional Transportation Plan/Sustainable Communities Strategy. https://tularecog.org/tcag/planning/rtp/rtp-2022/
- US Environmental Protection Agency (USEPA). 2009, December. EPA: Greenhouse Gases Threaten Public Health and the Environment. Science overwhelmingly shows greenhouse gas concentrations at unprecedented levels due to human activity. https://archive.epa.gov/epapages/newsroom_archive/newsreleases/08d11a451131bca58525768500 5bf252.html.
 - -----. 2024, June 17(accessed). Health and Environmental Effects of Hazardous Air Pollutants. https://www.epa.gov/haps/health-and-environmental-effects-hazardous-air-pollutants.

Assumptions Worksheet

CalEEMod Inputs - Hope Elementary School Project

Name:	Hope Elementary School Project
Project Number:	HOPE-01
Project Location:	613 W Teapot Dome Ave, Porterville, CA 93257
County/Air Basin:	Tulare County
Land Use Setting:	Rural
Operational Year:	2028
Gas Utility:	Southern California Gas
Electric Utility:	Southern California Edison
Air Basin:	San Joaquin Valley
Air District:	San Joaquin Valley APCD

	SQFT	Amount of Debris			
Demolition					
Asphalt Demolition (Tons)	1,000	15			
Project Components	SQFT	Building Footprint	Acres	Number of Stories	Number of Units
Construction					
Building L	11,462	11,462	0.26	1	10
Surface Work					
Parking	28,000	NA	0.64	NA	NA
Other Asphalt Surfaces	19,956	NA	0.46	NA	NA

Notes

¹ The 5 portable classrooms will be relocated from Jackson Jr. High School

					Land Use Square
Land Use Type	Land Use Subtype	Unit Amount	Size Metric	Lot Acreage	Feet
Educational	Elementary School	11.46	1000 sqft	0.26	11,462
Parking	Parking Lot	28.00	1000 sqft	0.64	28,000
Parking	Other Asphalt Surfaces	19.96	1000 sqft	0.46	19,956
				1.36	

Demolition Haul Distance Haul Truck Capacity¹ (miles)¹ Amount to be Demolished **Total Trip Ends** Duration (days) Trip Ends Per Day Component 20 Asphalt (Tons) 15 20 2 23 1 1 Total Notes ¹ CalEEMod default used.

Soil Haul

			Haul Distance			
Construction Activities	Volume (CY)	Haul Truck Capacity (CY) ¹	(miles) ¹	Total Trip Ends	Duration (days)	Trip Ends Per Day
Soil Import	0	16	20	0	5	0
Soil Export	2,990	16	20	374	5	75
Nc	otes					75

¹ CalEEMod default used.

Construction Activities and Schedule Assumptions

* based on schedule provided by the District

		Construction Schedule				
Construction Activities	Phase Type	Start Date	End Date	CalEEMod Duration (Workday)		
Demolition	Demolition	4/1/2027	4/15/2027	10		
Site Preparation	Site Preparation	4/16/2027	4/17/2027	1		
Grading	Grading	4/18/2027	4/20/2027	2		
Building Construction	Building Construction	4/21/2027	9/8/2027	101		
Paving	Paving	9/2/2027	9/8/2027	5		
Architectural Coating	Architectural Coating	9/2/2027	9/8/2027	5		

Normalization Calculations

CalEEMod Defaults Construction Duration					
160 days of construc					
0.44	years of construction				
5.26	months of construction				

	Assumed Construction Duration					
	4/1/2027	3/31/2028				
[365	days				
	12.00	months				
tor:	2.28					

Norm Factor:

2.20

NEW Construction Schedule (CalEEMod)

			CalEEMod Duration	
Construction Activities	Start Date	End Date	(Workday)	Normalization Check
Demolition	4/1/2027	5/3/2027	23	23
Site Preparation	5/4/2027	5/5/2027	2	2
Grading	5/6/2027	5/12/2027	5	5
Building Construction	5/13/2027	3/29/2028	230	230
Paving	3/15/2028	3/29/2028	11	11
Architectural Coating	3/15/2028	3/29/2028	11	11

NEW Overlapping Construction Schedule (CalEEMod)

Construction Activities	Start Date	End Date	CalEEMod Duration
Demolition	4/1/2027	5/3/2027	23
Site Preparation	5/4/2027	5/5/2027	2
Grading	5/6/2027	5/12/2027	5
Building Construction	5/13/2027	3/14/2028	219
Building Construction, Paving, and Architectural Coating	3/15/2028	3/29/2028	11

Pavement Volume to Weight Conversion

				Weight of		
		Assumed		Crushed		
Component	Total SF of Area ¹	Thickness (foot) ²	Debris Volume (cu. ft)	Asphalt (lbs/cf) ³	AC Mass (lbs)	AC Mass (tons)
Asphalt Demolition	1,000	0.333	333	89	29,630	14.81
Total	1,000					15

¹ Based on aerial image of existing project site.

² Gibbons, Jim. 1999. Pavements and Surface Materials. Nonpoint Education for Municipal Officials, Technical Paper Number 8. University of Connecticut Cooperative Extension System. https://www.uni-groupusa.org/PDF/NEMO_tech_8.pdf

³ CalRecycle. 2019. Solid Waste Cleanup Program Weights and Volumes for Project Estimates. https://www.delmar.ca.us/DocumentCenter/View/5668/CalRecycle-Conversion-Table

CalEEMod Construction Off-Road Equipment Inputs Based on information from District where indicated. CalEEMod default worker and vendor trips have been used for all construction activities. Where information has not been provided by the District, CalEEMod defaults have been used.

	Constru	ction Equipm	ent Details			
Equipment	# of Equipment	hr/day	hp	load factor	total trips per day	On-Site Wate Truck Trave Distance (miles/day)
molition						
Tractors/Loaders/Backhoes	3	8	84	0.37		
Rubber Tired Dozers	1	8	367	0.4		
Concrete/Industrial Saws	1	8	33	0.73		
Worker Trips					13	
Vendor Trips						
Hauling Trips					1	
Water Trucks	Acres Disturbed:	2.00			10	1.65
e Preparation						
Graders	1	8	148	0.41		
Tractors/Loaders/Backhoes	1	8	84	0.37		
Rubber Tired Dozers	1	7	367	0.4		
Worker Trips				•	8	
Vendor Trips					0	
Hauling Trips					0	
Water Trucks	Acres Disturbed:	1.44			8	1.19
ading						
Graders	1	8	148	0.71		
Tractors/Loaders/Backhoes	1	8	84	0.37	1	
Rubber Tired Dozers	2	7	367	0.40	1	
Worker Trips	•				8	
Vendor Trips					0	
Hauling Trips					75	
Water Trucks	Acres Disturbed:	1.88			10	1.55
ilding Construction						-
Cranes	1	4	367	0.29		
Forklifts	2	6	82	0.20	1	
Tractors/Loaders/Backhoes	1	6	84	0.37		
Generator Sets	1	8	14	0.74		
Welders	3	8	46	0.45		
Worker Trips					5	
Vendor Trips					2	
Hauling Trips					0	
ving						
Tractors/Loaders/Backhoes	1	8	84	0.37		
Cement and Mortar Mixers	1	6	10	0.56		
Pavers	1	6	81	0.42	1	
Rollers	1	7	36	0.38	1	
Paving Equipment	1	8	89	0.36		
Worker Trips					18	
Vendor Trips					0	
Hauling Trips					0	
chitectural Coating						
Air Compressors	1	6	37	0.48		
Worker Trips					1	
Vendor Trips					0	
Hauling Trips					0	

Notes:

 $^{1}\,$ Included calculated water truck trips as vendor trips in model.

 $^2\,$ Onsite water truck travel distanced calculated based on spray width of 20 ft for 0.4125 mi/ac/watering rate.

CalEEMod Construction and Operation Model

Hope Elementary School Detailed Report

Table of Contents

- 1. Basic Project Information
 - 1.1. Basic Project Information
 - 1.2. Land Use Types
 - 1.3. User-Selected Emission Reduction Measures by Emissions Sector
- 2. Emissions Summary
 - 2.1. Construction Emissions Compared Against Thresholds
 - 2.2. Construction Emissions by Year, Unmitigated
 - 2.3. Construction Emissions by Year, Mitigated
 - 2.4. Operations Emissions Compared Against Thresholds
 - 2.5. Operations Emissions by Sector, Unmitigated
 - 2.6. Operations Emissions by Sector, Mitigated
- 3. Construction Emissions Details
 - 3.1. Demolition (2027) Unmitigated
 - 3.2. Demolition (2027) Mitigated
 - 3.3. Site Preparation (2027) Unmitigated

- 3.4. Site Preparation (2027) Mitigated
- 3.5. Grading (2027) Unmitigated
- 3.6. Grading (2027) Mitigated
- 3.7. Building Construction (2027) Unmitigated
- 3.8. Building Construction (2027) Mitigated
- 3.9. Building Construction (2028) Unmitigated
- 3.10. Building Construction (2028) Mitigated
- 3.11. Paving (2028) Unmitigated
- 3.12. Paving (2028) Mitigated
- 3.13. Architectural Coating (2028) Unmitigated
- 3.14. Architectural Coating (2028) Mitigated
- 4. Operations Emissions Details
 - 4.1. Mobile Emissions by Land Use
 - 4.1.1. Unmitigated
 - 4.1.2. Mitigated
 - 4.2. Energy
 - 4.2.1. Electricity Emissions By Land Use Unmitigated
 - 4.2.2. Electricity Emissions By Land Use Mitigated

4.2.3. Natural Gas Emissions By Land Use - Unmitigated

4.2.4. Natural Gas Emissions By Land Use - Mitigated

- 4.3. Area Emissions by Source
 - 4.3.1. Unmitigated
 - 4.3.2. Mitigated
- 4.4. Water Emissions by Land Use
 - 4.4.1. Unmitigated
 - 4.4.2. Mitigated
- 4.5. Waste Emissions by Land Use
 - 4.5.1. Unmitigated
 - 4.5.2. Mitigated
- 4.6. Refrigerant Emissions by Land Use
 - 4.6.1. Unmitigated
 - 4.6.2. Mitigated
- 4.7. Offroad Emissions By Equipment Type
 - 4.7.1. Unmitigated
 - 4.7.2. Mitigated
- 4.8. Stationary Emissions By Equipment Type

4.8.1. Unmitigated

4.8.2. Mitigated

4.9. User Defined Emissions By Equipment Type

4.9.1. Unmitigated

4.9.2. Mitigated

- 4.10. Soil Carbon Accumulation By Vegetation Type
 - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated
 - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated
 - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated
 - 4.10.4. Soil Carbon Accumulation By Vegetation Type Mitigated
 - 4.10.5. Above and Belowground Carbon Accumulation by Land Use Type Mitigated
 - 4.10.6. Avoided and Sequestered Emissions by Species Mitigated
- 5. Activity Data
 - 5.1. Construction Schedule
 - 5.2. Off-Road Equipment
 - 5.2.1. Unmitigated
 - 5.2.2. Mitigated
 - 5.3. Construction Vehicles

5.3.1. Unmitigated

5.3.2. Mitigated

5.4. Vehicles

- 5.4.1. Construction Vehicle Control Strategies
- 5.5. Architectural Coatings

5.6. Dust Mitigation

- 5.6.1. Construction Earthmoving Activities
- 5.6.2. Construction Earthmoving Control Strategies
- 5.7. Construction Paving
- 5.8. Construction Electricity Consumption and Emissions Factors
- 5.9. Operational Mobile Sources
 - 5.9.1. Unmitigated
 - 5.9.2. Mitigated
- 5.10. Operational Area Sources
 - 5.10.1. Hearths
 - 5.10.1.1. Unmitigated
 - 5.10.1.2. Mitigated
 - 5.10.2. Architectural Coatings

- 5.10.3. Landscape Equipment
- 5.10.4. Landscape Equipment Mitigated
- 5.11. Operational Energy Consumption
 - 5.11.1. Unmitigated
 - 5.11.2. Mitigated
- 5.12. Operational Water and Wastewater Consumption
 - 5.12.1. Unmitigated
 - 5.12.2. Mitigated
- 5.13. Operational Waste Generation
 - 5.13.1. Unmitigated
 - 5.13.2. Mitigated
- 5.14. Operational Refrigeration and Air Conditioning Equipment
 - 5.14.1. Unmitigated
 - 5.14.2. Mitigated
- 5.15. Operational Off-Road Equipment
 - 5.15.1. Unmitigated
 - 5.15.2. Mitigated
- 5.16. Stationary Sources

5.16.1. Emergency Generators and Fire Pumps

- 5.16.2. Process Boilers
- 5.17. User Defined

5.18. Vegetation

- 5.18.1. Land Use Change
 - 5.18.1.1. Unmitigated
 - 5.18.1.2. Mitigated
- 5.18.1. Biomass Cover Type
 - 5.18.1.1. Unmitigated
 - 5.18.1.2. Mitigated
- 5.18.2. Sequestration
 - 5.18.2.1. Unmitigated
 - 5.18.2.2. Mitigated
- 6. Climate Risk Detailed Report
 - 6.1. Climate Risk Summary
 - 6.2. Initial Climate Risk Scores
 - 6.3. Adjusted Climate Risk Scores
 - 6.4. Climate Risk Reduction Measures

- 7. Health and Equity Details
 - 7.1. CalEnviroScreen 4.0 Scores
 - 7.2. Healthy Places Index Scores
 - 7.3. Overall Health & Equity Scores
 - 7.4. Health & Equity Measures
 - 7.5. Evaluation Scorecard
 - 7.6. Health & Equity Custom Measures
- 8. User Changes to Default Data

1. Basic Project Information

1.1. Basic Project Information

Data Field	Value
Project Name	Hope Elementary School
Construction Start Date	4/1/2027
Operational Year	2028
Lead Agency	
Land Use Scale	Project/site
Analysis Level for Defaults	County
Windspeed (m/s)	2.10
Precipitation (days)	23.0
Location	36.02181915386892, -119.03170591462042
County	Tulare
City	Unincorporated
Air District	San Joaquin Valley APCD
Air Basin	San Joaquin Valley
TAZ	2736
EDFZ	9
Electric Utility	Southern California Edison
Gas Utility	Southern California Gas
App Version	2022.1.1.28

1.2. Land Use Types

Elementary School 11.5 1000sqft 0.26 11,462 0.00 0.00	L	and Use Subtype	Size	Unit	Lot Acreage	Building Area (sq ft)	Landscape Area (sq ft)	Special Landscape Area (sq ft)	Population	Description
	Е	lementary School	11.5	1000sqft	0.26	11,462	0.00	0.00	—	—

Other Asphalt Surfaces	28.0	1000sqft	0.64	0.00	0.00	0.00		—
Parking Lot	20.0	1000sqft	0.46	0.00	0.00	0.00	—	—

1.3. User-Selected Emission Reduction Measures by Emissions Sector

Sector	#	Measure Title
Energy	E-10-B	Establish Onsite Renewable Energy Systems: Solar Power

2. Emissions Summary

2.1. Construction Emissions Compared Against Thresholds

		<u> </u>		3,	,	/		· ·			<i>,</i>	/						
Un/Mit.	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	_	_	-	_	_	_	_	—	—	—	_	_	_	—	—	—
Unmit.	1.90	1.51	18.7	15.9	0.06	0.64	10.9	11.5	0.60	4.06	4.66	—	7,783	7,783	0.22	0.87	11.8	8,060
Daily, Winter (Max)	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	-
Unmit.	8.16	7.86	13.0	18.2	0.03	0.39	0.14	0.54	0.36	0.03	0.40	—	3,087	3,087	0.12	0.04	0.01	3,101
Average Daily (Max)	—	—		_	_	—	—		_	_	_	_	_	_		_	—	_
Unmit.	0.68	0.57	4.93	5.84	0.01	0.16	0.36	0.52	0.15	0.09	0.24	_	1,154	1,154	0.05	0.03	0.14	1,163
Annual (Max)	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_
Unmit.	0.12	0.10	0.90	1.07	< 0.005	0.03	0.07	0.10	0.03	0.02	0.04	_	191	191	0.01	< 0.005	0.02	193

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

2.2. Construction Emissions by Year, Unmitigated

Year	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily - Summer (Max)	—	—	—	-	—	—	—	—	_	—	_	—	—	_	—	_	—	—
2027	1.90	1.51	18.7	15.9	0.06	0.64	10.9	11.5	0.60	4.06	4.66	—	7,783	7,783	0.22	0.87	11.8	8,060
Daily - Winter (Max)	—	_	_	_	_	_	—	_	_	_	_	_	—	_	_	_	—	_
2027	1.19	0.99	8.33	10.1	0.02	0.26	0.04	0.30	0.24	0.01	0.25	—	1,868	1,868	0.08	0.02	< 0.005	1,876
2028	8.16	7.86	13.0	18.2	0.03	0.39	0.14	0.54	0.36	0.03	0.40	—	3,087	3,087	0.12	0.04	0.01	3,101
Average Daily	—	_	_		-	_	_	_	-	_	_	_	_	_	-	_	_	_
2027	0.68	0.57	4.93	5.84	0.01	0.16	0.36	0.52	0.15	0.09	0.24	_	1,154	1,154	0.05	0.03	0.14	1,163
2028	0.41	0.37	1.54	2.00	< 0.005	0.05	0.01	0.05	0.04	< 0.005	0.04	_	362	362	0.01	< 0.005	0.02	364
Annual	_	-	_	-	_	_	_	_	-	-	-	_	_	_	_	_	_	_
2027	0.12	0.10	0.90	1.07	< 0.005	0.03	0.07	0.10	0.03	0.02	0.04	_	191	191	0.01	< 0.005	0.02	193
2028	0.07	0.07	0.28	0.36	< 0.005	0.01	< 0.005	0.01	0.01	< 0.005	0.01	_	60.0	60.0	< 0.005	< 0.005	< 0.005	60.2

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

2.3. Construction Emissions by Year, Mitigated

Year	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily - Summer (Max)	—	_	_	_	—	_	—	_	—				—	_	_	—	—	—
2027	1.90	1.51	18.7	15.9	0.06	0.64	10.9	11.5	0.60	4.06	4.66	_	7,783	7,783	0.22	0.87	11.8	8,060
Daily - Winter (Max)	—	_	_	_	—	—	—	—					—		—	—		—
2027	1.19	0.99	8.33	10.1	0.02	0.26	0.04	0.30	0.24	0.01	0.25	_	1,868	1,868	0.08	0.02	< 0.005	1,876
2028	8.16	7.86	13.0	18.2	0.03	0.39	0.14	0.54	0.36	0.03	0.40	_	3,087	3,087	0.12	0.04	0.01	3,101

Average Daily	-	-	-	-	-	_	—	—	—	—	—	-	-	—	-	_	—	-
2027	0.68	0.57	4.93	5.84	0.01	0.16	0.36	0.52	0.15	0.09	0.24	—	1,154	1,154	0.05	0.03	0.14	1,163
2028	0.41	0.37	1.54	2.00	< 0.005	0.05	0.01	0.05	0.04	< 0.005	0.04	_	362	362	0.01	< 0.005	0.02	364
Annual	_	_	—	-	-	_	_	_	_	_	_	_	-	_	_	_	_	_
2027	0.12	0.10	0.90	1.07	< 0.005	0.03	0.07	0.10	0.03	0.02	0.04	_	191	191	0.01	< 0.005	0.02	193
2028	0.07	0.07	0.28	0.36	< 0.005	0.01	< 0.005	0.01	0.01	< 0.005	0.01	_	60.0	60.0	< 0.005	< 0.005	< 0.005	60.2

2.4. Operations Emissions Compared Against Thresholds

		\		,, ····		/		· · ·	,		<u>je. e.</u>	/						
Un/Mit.	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)		_	—	-	_	-	_	—	-	_	—	_	-	_	_	_	—	—
Unmit.	1.25	1.18	0.86	7.98	0.02	0.02	1.56	1.58	0.01	0.40	0.41	8.67	2,033	2,041	0.94	0.09	5.80	2,096
Mit.	1.25	1.18	0.86	7.98	0.02	0.02	1.56	1.58	0.01	0.40	0.41	8.67	1,964	1,972	0.94	0.09	5.80	2,027
% Reduced	_	-	-	—	-	-	-	-	-	-	-	-	3%	3%	< 0.5%	-	_	3%
Daily, Winter (Max)	_	-	-	-	-	-	-	-	-	_	-	-	-	-		-	-	-
Unmit.	1.08	1.01	0.98	6.07	0.02	0.01	1.56	1.58	0.01	0.40	0.41	8.67	1,874	1,883	0.95	0.09	0.19	1,934
Mit.	1.08	1.01	0.98	6.07	0.02	0.01	1.56	1.58	0.01	0.40	0.41	8.67	1,805	1,814	0.95	0.09	0.19	1,865
% Reduced	—	-	-	—	-	-	_	-	-	-	-	-	4%	4%	< 0.5%	-	-	4%
Average Daily (Max)	_	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-
Unmit.	0.90	0.84	0.67	4.71	0.01	0.01	1.10	1.11	0.01	0.28	0.29	8.67	1,428	1,437	0.93	0.06	1.82	1,481
Mit.	0.90	0.84	0.67	4.71	0.01	0.01	1.10	1.11	0.01	0.28	0.29	8.67	1,359	1,368	0.92	0.06	1.82	1,412
% Reduced	_	_	-	_	-	_	-	_	— B-55	_	_	_	5%	5%	< 0.5%	-	— 56	5%

Annual (Max)	-	-	_	-	-	-	-	-	-	-	_	-	-	-	_	_	-	_
Unmit.	0.16	0.15	0.12	0.86	< 0.005	< 0.005	0.20	0.20	< 0.005	0.05	0.05	1.43	236	238	0.15	0.01	0.30	245
Mit.	0.16	0.15	0.12	0.86	< 0.005	< 0.005	0.20	0.20	< 0.005	0.05	0.05	1.43	225	227	0.15	0.01	0.30	234
% Reduced	_	-	-	-	-	_		-	-	-	-	-	5%	5%	< 0.5%	1%	-	5%

2.5. Operations Emissions by Sector, Unmitigated

Sector	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	-	-	—	-	-	-	_	_	_	_	_	_	_	_	_	_	-	-
Mobile	0.89	0.83	0.86	7.49	0.02	0.01	1.56	1.58	0.01	0.40	0.41	_	1,833	1,833	0.06	0.08	5.76	1,865
Area	0.36	0.35	< 0.005	0.50	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	-	2.05	2.05	< 0.005	< 0.005	-	2.06
Energy	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	-	0.00	-	196	196	0.01	< 0.005	_	196
Water	-	-	—	_	—	_	_	_	-	_	_	0.64	1.91	2.55	0.07	< 0.005	_	4.65
Waste	-	-	—	_	—	_	_	_	-	_	_	8.03	0.00	8.03	0.80	0.00	_	28.1
Refrig.	-	-	—	_	—	_	_	_	-	_	_	—	_	_	—	_	0.04	0.04
Total	1.25	1.18	0.86	7.98	0.02	0.02	1.56	1.58	0.01	0.40	0.41	8.67	2,033	2,041	0.94	0.09	5.80	2,096
Daily, Winter (Max)	-	-	_	_	-	-	-	-	-	_	—	—	-	_	_	_	-	-
Mobile	0.81	0.74	0.98	6.07	0.02	0.01	1.56	1.58	0.01	0.40	0.41	_	1,677	1,677	0.07	0.09	0.15	1,705
Area	0.27	0.27	_	_	_	-	_	_	_	_	_	_	_	_	_	_	-	_
Energy	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	196	196	0.01	< 0.005	-	196
Water	-	-	_	_	_	-	_	_	_	_	_	0.64	1.91	2.55	0.07	< 0.005	-	4.65
Waste	_	_		_	_	_	_	_	_	_	_	8.03	0.00	8.03	0.80	0.00	_	28.1
Refrig.	_	_		_	_	_	_	_	_	_	_	_	_	_	-	_	0.04	0.04
Total	1.08	1.01	0.98	6.07	0.02	0.01	1.56	1.58	0.01	0.40	0.41	8.67	1,874	1,883	0.95	0.09	0.19 57	1,934

Average Daily	-	-	_	_	-	_	-	-	-	_	-	_	_	-	_	_	_	-
Mobile	0.59	0.54	0.66	4.47	0.01	0.01	1.10	1.11	0.01	0.28	0.29	—	1,230	1,230	0.05	0.06	1.78	1,251
Area	0.31	0.31	< 0.005	0.25	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	—	1.01	1.01	< 0.005	< 0.005	—	1.01
Energy	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	196	196	0.01	< 0.005	—	196
Water	—	—	—	—	—	—	—	—	—	—	—	0.64	1.91	2.55	0.07	< 0.005	—	4.65
Waste	—	—	—	—	—	-	—	-	—	—	—	8.03	0.00	8.03	0.80	0.00	—	28.1
Refrig.	—	—	—	—	—	—	—	-	—	—	—	—	—	—	—	—	0.04	0.04
Total	0.90	0.84	0.67	4.71	0.01	0.01	1.10	1.11	0.01	0.28	0.29	8.67	1,428	1,437	0.93	0.06	1.82	1,481
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—
Mobile	0.11	0.10	0.12	0.82	< 0.005	< 0.005	0.20	0.20	< 0.005	0.05	0.05	_	204	204	0.01	0.01	0.29	207
Area	0.06	0.06	< 0.005	0.04	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	0.17	0.17	< 0.005	< 0.005	_	0.17
Energy	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	32.4	32.4	< 0.005	< 0.005	_	32.5
Water	-	_	-	_	-	-	_	-	-	-	_	0.11	0.32	0.42	0.01	< 0.005	_	0.77
Waste	_	_	_	_	_	_	_	_	_	_	_	1.33	0.00	1.33	0.13	0.00	_	4.65
Refrig.	_	_	_	_	_	_	_	-	_	_	_	_	-	-	_	_	0.01	0.01
Total	0.16	0.15	0.12	0.86	< 0.005	< 0.005	0.20	0.20	< 0.005	0.05	0.05	1.43	236	238	0.15	0.01	0.30	245

2.6. Operations Emissions by Sector, Mitigated

Sector	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	_	—	—	_	—	—	—	—	—	—	—	—	—	_	—	—	—
Mobile	0.89	0.83	0.86	7.49	0.02	0.01	1.56	1.58	0.01	0.40	0.41	_	1,833	1,833	0.06	0.08	5.76	1,865
Area	0.36	0.35	< 0.005	0.50	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	2.05	2.05	< 0.005	< 0.005	_	2.06
Energy	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	127	127	0.01	< 0.005	_	127
Water	_	_	_	_	_	_	_	_	_	_	_	0.64	1.91	2.55	0.07	< 0.005	_	4.65
Waste	_	_	_	_	_	_		_	_	_	_	8.03	0.00	8.03	0.80	0.00		28.1

Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	0.04	0.04
Total	1.25	1.18	0.86	7.98	0.02	0.02	1.56	1.58	0.01	0.40	0.41	8.67	1,964	1,972	0.94	0.09	5.80	2,027
Daily, Winter (Max)		_	_	_	-	-	-	-	_	_	_	_	—	_	-	_	-	_
Mobile	0.81	0.74	0.98	6.07	0.02	0.01	1.56	1.58	0.01	0.40	0.41	_	1,677	1,677	0.07	0.09	0.15	1,705
Area	0.27	0.27	_	—	—	—	—	—	-	-	—	—	—	—	—	—	—	—
Energy	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	-	0.00	—	127	127	0.01	< 0.005	—	127
Water	—	—	—	—	—	—	—	—	-	-	—	0.64	1.91	2.55	0.07	< 0.005	—	4.65
Waste	-	_	_	-	—	-	-	—	-	-	_	8.03	0.00	8.03	0.80	0.00	_	28.1
Refrig.	-	-	_	-	-	-	-	-	-	-	-	-	_	-	—	_	0.04	0.04
Total	1.08	1.01	0.98	6.07	0.02	0.01	1.56	1.58	0.01	0.40	0.41	8.67	1,805	1,814	0.95	0.09	0.19	1,865
Average Daily	_	-	-	-	_		_	_	_	-	—	-	—	_	_	-	-	-
Mobile	0.59	0.54	0.66	4.47	0.01	0.01	1.10	1.11	0.01	0.28	0.29	-	1,230	1,230	0.05	0.06	1.78	1,251
Area	0.31	0.31	< 0.005	0.25	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	—	1.01	1.01	< 0.005	< 0.005	_	1.01
Energy	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	-	0.00	—	127	127	0.01	< 0.005		127
Water	—	—	—	_	—	—	—	—	_	-	—	0.64	1.91	2.55	0.07	< 0.005		4.65
Waste	—	_	_	_	—	—	_	—	_	-	—	8.03	0.00	8.03	0.80	0.00	_	28.1
Refrig.	—	_	_	_	—	—	_	—	_	-	—	_	—	-	—	—	0.04	0.04
Total	0.90	0.84	0.67	4.71	0.01	0.01	1.10	1.11	0.01	0.28	0.29	8.67	1,359	1,368	0.92	0.06	1.82	1,412
Annual	_	_	_	_	_	_	_	_	_	-	_	_	_	_	-	_	_	_
Mobile	0.11	0.10	0.12	0.82	< 0.005	< 0.005	0.20	0.20	< 0.005	0.05	0.05	_	204	204	0.01	0.01	0.29	207
Area	0.06	0.06	< 0.005	0.04	< 0.005	< 0.005	_	< 0.005	< 0.005	-	< 0.005	_	0.17	0.17	< 0.005	< 0.005	_	0.17
Energy	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	_	0.00	-	21.0	21.0	< 0.005	< 0.005	_	21.1
Water	_	_	_	_	_	_	_	_	_	_	_	0.11	0.32	0.42	0.01	< 0.005	_	0.77
Waste	_	_	_	_	-		_	_	_	_	_	1.33	0.00	1.33	0.13	0.00	_	4.65
Refrig.	_	_	_	_	-	_	_	_	_	-	_	_	_	_	_	_	0.01	0.01
Total	0.16	0.15	0.12	0.86	< 0.005	< 0.005	0.20	0.20	< 0.005	0.05	0.05	1.43	225	227	0.15	0.01	0.30	234

3. Construction Emissions Details

3.1. Demolition (2027) - Unmitigated

	TOO		luo –			DILLOF	DIMOR	DULOT										000
Location	IOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	-	-	_	_	_	-	-	-	-	-	—	_	_	-	-	_	-	-
Daily, Summer (Max)	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	-
Off-Roa d Equipm ent	1.60	1.34	12.4	14.4	0.02	0.47		0.47	0.43		0.43		2,494	2,494	0.10	0.02		2,502
Demoliti on	—	-	-	_	-	—	0.01	0.01	-	< 0.005	< 0.005	-	-	-	_	—	-	-
Onsite truck	< 0.005	< 0.005	0.02	0.01	< 0.005	< 0.005	2.43	2.43	< 0.005	0.24	0.24	_	7.15	7.15	< 0.005	< 0.005	0.01	7.51
Daily, Winter (Max)		_	_	_	_		_	—	—			—	_	_	_	_	_	—
Average Daily	—	—	—	_	_	—	—	_	-	_	—	-	—	-	_	—	—	—
Off-Roa d Equipm ent	0.10	0.08	0.78	0.91	< 0.005	0.03		0.03	0.03		0.03		157	157	0.01	< 0.005		158
Demoliti on	—	_	_	_	_	—	< 0.005	< 0.005	_	< 0.005	< 0.005	_		_			_	
Onsite truck	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.14	0.14	< 0.005	0.01	0.01	_	0.45	0.45	< 0.005	< 0.005	< 0.005	0.47
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Off-Roa d Equipm ent	0.02	0.02	0.14	0.17	< 0.005	0.01		0.01	< 0.005	_	< 0.005	_	26.0	26.0	< 0.005	< 0.005	_	26.1
Demoliti on	_	_	—	_	—	—	< 0.005	< 0.005	—	< 0.005	< 0.005	_	-	-	_	—	—	-
Onsite truck	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.03	0.03	< 0.005	< 0.005	< 0.005	-	0.07	0.07	< 0.005	< 0.005	< 0.005	0.08
Offsite	_	_	_	_	_	_	_	_	_	-	_	_	-	-	_	-	_	_
Daily, Summer (Max)			_	_		_	_	_	_	_		_	_	_	_	_		—
Worker	0.07	0.06	0.04	0.72	0.00	0.00	0.10	0.10	0.00	0.02	0.02	—	110	110	0.01	< 0.005	0.37	112
Vendor	0.01	0.01	0.29	0.11	< 0.005	< 0.005	0.06	0.07	< 0.005	0.02	0.02	_	225	225	< 0.005	0.03	0.50	236
Hauling	< 0.005	< 0.005	0.08	0.02	< 0.005	< 0.005	0.02	0.02	< 0.005	0.01	0.01	-	67.6	67.6	< 0.005	0.01	0.15	71.0
Daily, Winter (Max)			_	—	—	—	—	—	—	_	_	-	_	_	_	_	—	—
Average Daily				—	_	_		_	_	—	_	_	_	_	_	—	_	—
Worker	< 0.005	< 0.005	< 0.005	0.04	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	—	6.38	6.38	< 0.005	< 0.005	0.01	6.48
Vendor	< 0.005	< 0.005	0.02	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	14.2	14.2	< 0.005	< 0.005	0.01	14.8
Hauling	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	4.26	4.26	< 0.005	< 0.005	< 0.005	4.47
Annual	—	—	—	—	—	—	—	—	_	-	—	_	-	-	—	-	—	_
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	1.06	1.06	< 0.005	< 0.005	< 0.005	1.07
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-	2.34	2.34	< 0.005	< 0.005	< 0.005	2.46
Hauling	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-	0.71	0.71	< 0.005	< 0.005	< 0.005	0.74

3.2. Demolition (2027) - Mitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	—	—	_	— В-60	—	_	_	—	—	_	_	<u> 61 </u>	—
									17 / 81									

Daily, Summer (Max)	_	_	_	_	_	_		_	_	_	_	_	_	_	_			_
Off-Roa d Equipm ent	1.60	1.34	12.4	14.4	0.02	0.47	_	0.47	0.43	—	0.43		2,494	2,494	0.10	0.02		2,502
Demoliti on	_	_	-	-	-	-	0.01	0.01	-	< 0.005	< 0.005	-	-	-	-	—	—	_
Onsite truck	< 0.005	< 0.005	0.02	0.01	< 0.005	< 0.005	2.43	2.43	< 0.005	0.24	0.24	-	7.15	7.15	< 0.005	< 0.005	0.01	7.51
Daily, Winter (Max)	_		—	_	—	_	_	—	_	_		_	—	—	—	_	_	_
Average Daily	_	—	_	—	-	-	—	—	—	—	—	-	-	_	-	—	_	—
Off-Roa d Equipm ent	0.10	0.08	0.78	0.91	< 0.005	0.03		0.03	0.03		0.03		157	157	0.01	< 0.005		158
Demoliti on	_	-	-	-	-	-	< 0.005	< 0.005	-	< 0.005	< 0.005	-	-	-	-	—	_	—
Onsite truck	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.14	0.14	< 0.005	0.01	0.01	-	0.45	0.45	< 0.005	< 0.005	< 0.005	0.47
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Roa d Equipm ent	0.02	0.02	0.14	0.17	< 0.005	0.01		0.01	< 0.005	—	< 0.005	—	26.0	26.0	< 0.005	< 0.005		26.1
Demoliti on			_	_	_	_	< 0.005	< 0.005		< 0.005	< 0.005		_	_	_			—
Onsite truck	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.03	0.03	< 0.005	< 0.005	< 0.005	_	0.07	0.07	< 0.005	< 0.005	< 0.005	0.08
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)					_	_			— B-61 18 / 81	_		_	_	_	_		— 62	—

Worker	0.07	0.06	0.04	0.72	0.00	0.00	0.10	0.10	0.00	0.02	0.02	_	110	110	0.01	< 0.005	0.37	112
Vendor	0.01	0.01	0.29	0.11	< 0.005	< 0.005	0.06	0.07	< 0.005	0.02	0.02	—	225	225	< 0.005	0.03	0.50	236
Hauling	< 0.005	< 0.005	0.08	0.02	< 0.005	< 0.005	0.02	0.02	< 0.005	0.01	0.01	—	67.6	67.6	< 0.005	0.01	0.15	71.0
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—		_	—	_	_	—	—	—
Average Daily	_	—	—	_	_	—	—	—	—	_	—	—	—	_		_	—	—
Worker	< 0.005	< 0.005	< 0.005	0.04	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	—	6.38	6.38	< 0.005	< 0.005	0.01	6.48
Vendor	< 0.005	< 0.005	0.02	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	14.2	14.2	< 0.005	< 0.005	0.01	14.8
Hauling	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	4.26	4.26	< 0.005	< 0.005	< 0.005	4.47
Annual	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	1.06	1.06	< 0.005	< 0.005	< 0.005	1.07
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	2.34	2.34	< 0.005	< 0.005	< 0.005	2.46
Hauling	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	0.71	0.71	< 0.005	< 0.005	< 0.005	0.74

3.3. Site Preparation (2027) - Unmitigated

Location	TOG	ROG	NOx	со				PM10T		PM2.5D		BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	_	—	—	—	—	—	—	_	—	—	—
Daily, Summer (Max)		-	—			—		—		—		—			—	—	—	—
Off-Roa d Equipm ent	1.42	1.19	10.4	11.6	0.02	0.47		0.47	0.43		0.43		2,065	2,065	0.08	0.02		2,072
Dust From Material Movemer	it	-					6.26	6.26		3.00	3.00							

Onsite truck	< 0.005	< 0.005	0.02	0.01	< 0.005	< 0.005	1.75	1.75	< 0.005	0.17	0.17	_	5.64	5.64	< 0.005	< 0.005	0.01	5.92
Daily, Winter (Max)	_	—	—	_	_	_	_	_	_	_	_	_	—	_	_	_	—	_
Average Daily		—	_	—	_	—	—	_	_	_	_	_	-	_	_	—	-	_
Off-Roa d Equipm ent	0.01	0.01	0.06	0.06	< 0.005	< 0.005		< 0.005	< 0.005	—	< 0.005	_	11.3	11.3	< 0.005	< 0.005	—	11.4
Dust From Material Movemer	 It					_	0.03	0.03		0.02	0.02	_		_	_		_	
Onsite truck	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	0.03	0.03	< 0.005	< 0.005	< 0.005	0.03
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Roa d Equipm ent	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	_	< 0.005	< 0.005	-	< 0.005	_	1.87	1.87	< 0.005	< 0.005	-	1.88
Dust From Material Movemer	 It	_	—	—	—	_	0.01	0.01	—	< 0.005	< 0.005	_	_	_			—	—
Onsite truck	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005		0.01	0.01	< 0.005	< 0.005	< 0.005	0.01
Offsite	_	-	-	-	-	-	_	-	-	-	-	_	-	_	-	-	-	-
Daily, Summer (Max)						_			_			_	_	_				
Worker	0.04	0.04	0.02	0.32	0.00	0.00	0.04	0.04	0.00	0.01	0.01	_	46.3	46.3	< 0.005	< 0.005	0.15	47.1
Vendor	0.01	0.01	0.22	0.08	< 0.005	< 0.005	0.05	0.05	< 0.005	0.01	0.02	_	165	165	< 0.005	0.03	0.37	173
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Daily, Winter (Max)	-	_	—	—	-	-	—	_	_	-	_	-	-	-	-	-	-	-
Average Daily	—	_	—	—	-	_	—	—	—	—	—	_	_	-	_	_	_	-
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	0.23	0.23	< 0.005	< 0.005	< 0.005	0.24
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	0.91	0.91	< 0.005	< 0.005	< 0.005	0.95
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	-	-	-	-	_	_	-	_	-	-	-	-	-	_	-	_
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	0.04	0.04	< 0.005	< 0.005	< 0.005	0.04
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	0.15	0.15	< 0.005	< 0.005	< 0.005	0.16
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.4. Site Preparation (2027) - Mitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	—	_	-	_	—	—	—	—	—	_	—	—	—	—	—	—	—
Daily, Summer (Max)		—	—	—	_	—	—	—	—	—		—	—	—	—	—	—	_
Off-Roa d Equipm ent	1.42	1.19	10.4	11.6	0.02	0.47		0.47	0.43		0.43		2,065	2,065	0.08	0.02		2,072
Dust From Material Movemer		-	_		-	-	6.26	6.26	-	3.00	3.00	-	-	-	_	-	-	-
Onsite truck	< 0.005	< 0.005	0.02	0.01	< 0.005	< 0.005	1.75	1.75	< 0.005	0.17	0.17	-	5.64	5.64	< 0.005	< 0.005	0.01	5.92
Daily, Winter (Max)	_	_	-	_	-	_	_	_	_	_		-	_	_	_	_	— 65	_

Average Daily		-	_	-	-	-	_	_	-	-	_	_	-	_	-	_	_	-
Off-Roa d Equipm ent	0.01	0.01	0.06	0.06	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	11.3	11.3	< 0.005	< 0.005	_	11.4
Dust From Material Movemer			_	_	_		0.03	0.03		0.02	0.02	_		-	_		_	_
Onsite truck	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	-	0.03	0.03	< 0.005	< 0.005	< 0.005	0.03
Annual	—	—	-	—	—	—	-	-	-	-	-	-	—	-	—	—	-	-
Off-Roa d Equipm ent	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	1.87	1.87	< 0.005	< 0.005	_	1.88
Dust From Material Movemer		_	_	_	_	_	0.01	0.01	_	< 0.005	< 0.005	_	_	_	_	_	_	_
Onsite truck	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	0.01	0.01	< 0.005	< 0.005	< 0.005	0.01
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)		-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-
Worker	0.04	0.04	0.02	0.32	0.00	0.00	0.04	0.04	0.00	0.01	0.01	_	46.3	46.3	< 0.005	< 0.005	0.15	47.1
Vendor	0.01	0.01	0.22	0.08	< 0.005	< 0.005	0.05	0.05	< 0.005	0.01	0.02	_	165	165	< 0.005	0.03	0.37	173
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-
Average Daily	—	-	-	_	-	_	-	-	-	-	-	_	—	_	_	-	-	-
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00 B-65 22 / 81	< 0.005	< 0.005		0.23	0.23	< 0.005	< 0.005	< @@05	0.24

Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	0.91	0.91	< 0.005	< 0.005	< 0.005	0.95
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	0.04	0.04	< 0.005	< 0.005	< 0.005	0.04
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	0.15	0.15	< 0.005	< 0.005	< 0.005	0.16
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.5. Grading (2027) - Unmitigated

Location		ROG	NOx							PM2.5D			NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_
Daily, Summer (Max)		_		_	_											_		—
Off-Roa d Equipm ent	1.63	1.37	12.2	13.9	0.02	0.54	_	0.54	0.50		0.50		2,455	2,455	0.10	0.02		2,464
Dust From Material Movemer		_	—	_	_		7.11	7.11		3.43	3.43							_
Onsite truck	< 0.005	< 0.005	0.02	0.01	< 0.005	< 0.005	2.28	2.28	< 0.005	0.23	0.23	—	6.82	6.82	< 0.005	< 0.005	0.01	7.17
Daily, Winter (Max)		_		_	_													_
Average Daily	_	—	_	_	—	—	_	—	—					—				—
Off-Roa d Equipm ent	0.02	0.02	0.17	0.19	< 0.005	0.01	_	0.01	0.01		0.01		33.6	33.6	< 0.005	< 0.005	_	33.8

Dust From Material Movemer			_			_	0.10	0.10	_	0.05	0.05	_	-	_	_	_	_	_
Onsite truck	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.03	0.03	< 0.005	< 0.005	< 0.005	_	0.09	0.09	< 0.005	< 0.005	< 0.005	0.10
Annual	_	-	_	_	_	_	_	_	_	_	_	-	-	_	-	_	_	_
Off-Roa d Equipm ent	< 0.005	< 0.005	0.03	0.03	< 0.005	< 0.005		< 0.005	< 0.005	_	< 0.005		5.57	5.57	< 0.005	< 0.005		5.59
Dust From Material Movemer	 it						0.02	0.02		0.01	0.01	_		_				
Onsite truck	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	0.02	0.02	< 0.005	< 0.005	< 0.005	0.02
Offsite	—	-	_	_	—	—	_	_	_	—	_	—	-	—	-	_	_	_
Daily, Summer (Max)	_	—	_	_	_	-	_	_	_	_	_	_	-	-	-	-	_	_
Worker	0.04	0.04	0.02	0.32	0.00	0.00	0.04	0.04	0.00	0.01	0.01	_	46.3	46.3	< 0.005	< 0.005	0.15	47.1
Vendor	0.01	0.01	0.28	0.10	< 0.005	< 0.005	0.06	0.06	< 0.005	0.02	0.02	—	207	207	< 0.005	0.03	0.46	217
Hauling	0.21	0.09	6.19	1.62	0.03	0.10	1.39	1.49	0.10	0.38	0.48	—	5,068	5,068	0.12	0.81	11.2	5,325
Daily, Winter (Max)	_	_	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	_
Average Daily		_	-	-	-	_	-	-	-	-	_	_	-	-	-	-	-	-
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	0.58	0.58	< 0.005	< 0.005	< 0.005	0.59
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-	2.83	2.83	< 0.005	< 0.005	< 0.005	2.96
Hauling	< 0.005	< 0.005	0.09	0.02	< 0.005	< 0.005	0.02	0.02	< 0.005	0.01	0.01	-	69.4	69.4	< 0.005	0.01	0.07	72.9
Annual	_	—	-	_	-	-	_	_	-	-	-	—	—	-	-	_	_	-
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	-	0.10	0.10	< 0.005	< 0.005	< 0.005 68	0.10

Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	0.47	0.47	< 0.005	< 0.005	< 0.005	0.49
Hauling	< 0.005	< 0.005	0.02	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	11.5	11.5	< 0.005	< 0.005	0.01	12.1

3.6. Grading (2027) - Mitigated

Location		ROG	NOx	со	SO2		PM10D	PM10T		PM2.5D		BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	—	—	—	—	—	_	—	—	—	_	—	—	—	-	—	—	—
Daily, Summer (Max)		_	_	_	_	—	—	—	—			_	—	—	_	_	—	_
Off-Roa d Equipm ent	1.63	1.37	12.2	13.9	0.02	0.54		0.54	0.50		0.50	_	2,455	2,455	0.10	0.02	_	2,464
Dust From Material Movemer		_	_	_	_	_	7.11	7.11		3.43	3.43	_	_	_	_	_	_	_
Onsite truck	< 0.005	< 0.005	0.02	0.01	< 0.005	< 0.005	2.28	2.28	< 0.005	0.23	0.23	-	6.82	6.82	< 0.005	< 0.005	0.01	7.17
Daily, Winter (Max)		_	_	_	_	—	—	—	—			_	_	—	_	_	—	
Average Daily	—	—	—	_	—	_		_	—	—	—	—	—	—	—	—	-	—
Off-Roa d Equipm ent	0.02	0.02	0.17	0.19	< 0.005	0.01		0.01	0.01		0.01	_	33.6	33.6	< 0.005	< 0.005		33.8
Dust From Material Movemer	 1t			_	_		0.10	0.10		0.05	0.05							_
Onsite truck	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.03	0.03	< 0.005 B-68	< 0.005	< 0.005	-	0.09	0.09	< 0.005	< 0.005	< 0.005 69	0.10

Annual	_	—	_	-	_	—	_	_	-	—	_	—	—	-	_	_	_	—
Off-Roa d Equipm ent	< 0.005	< 0.005	0.03	0.03	< 0.005	< 0.005		< 0.005	< 0.005		< 0.005	_	5.57	5.57	< 0.005	< 0.005		5.59
Dust From Material Movemer	 ht					_	0.02	0.02		0.01	0.01	_						
Onsite truck	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	0.02	0.02	< 0.005	< 0.005	< 0.005	0.02
Offsite	—	—	_	—	-	—	—	_	—	_	_	_	_	-	—	_	_	_
Daily, Summer (Max)			_	_	_	_		_	_	_	_	_	_	_	_	_	_	_
Worker	0.04	0.04	0.02	0.32	0.00	0.00	0.04	0.04	0.00	0.01	0.01	-	46.3	46.3	< 0.005	< 0.005	0.15	47.1
Vendor	0.01	0.01	0.28	0.10	< 0.005	< 0.005	0.06	0.06	< 0.005	0.02	0.02	_	207	207	< 0.005	0.03	0.46	217
Hauling	0.21	0.09	6.19	1.62	0.03	0.10	1.39	1.49	0.10	0.38	0.48	-	5,068	5,068	0.12	0.81	11.2	5,325
Daily, Winter (Max)		_	_	—	_	_	_	—	—	—	-	_	_	_	—	_	—	_
Average Daily	_	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	—
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	0.58	0.58	< 0.005	< 0.005	< 0.005	0.59
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	2.83	2.83	< 0.005	< 0.005	< 0.005	2.96
Hauling	< 0.005	< 0.005	0.09	0.02	< 0.005	< 0.005	0.02	0.02	< 0.005	0.01	0.01	—	69.4	69.4	< 0.005	0.01	0.07	72.9
Annual	_	_	_	-	_	_	—	—	-	-	-	—	—	-	-	-	—	-
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	0.10	0.10	< 0.005	< 0.005	< 0.005	0.10
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-	0.47	0.47	< 0.005	< 0.005	< 0.005	0.49
Hauling	< 0.005	< 0.005	0.02	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	11.5	11.5	< 0.005	< 0.005	0.01	12.1

3.7. Building Construction (2027) - Unmitigated

ontenta				duny, tor						, ,	<u> </u>							
Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	-	-	_	_	_	_	_	_	-	_	-	-	-	_
Daily, Summer (Max)	—	_	-	-		_	_	_	_	_	_	_	_	_	_	-	_	-
Off-Roa d Equipm ent	1.17	0.97	8.25	9.91	0.02	0.26	-	0.26	0.24	-	0.24	_	1,801	1,801	0.07	0.01	_	1,807
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
Off-Roa d Equipm ent	1.17	0.97	8.25	9.91	0.02	0.26	-	0.26	0.24	-	0.24		1,801	1,801	0.07	0.01		1,807
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	-	-	-	—	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Off-Roa d Equipm ent	0.53	0.44	3.76	4.52	0.01	0.12	-	0.12	0.11	-	0.11	_	821	821	0.03	0.01		824
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_
Off-Roa d Equipm ent	0.10	0.08	0.69	0.82	< 0.005	0.02		0.02	0.02	_	0.02		136	136	0.01	< 0.005	_	136
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Offsite	_	—	_	-	-	—	—	_	_	—	—	_	_	—	_	_	_	_
Daily, Summer (Max)	—	—	—	—	-	—	—	—	—	—	—	-	_	_	_	-	_	_
Worker	0.02	0.02	0.01	0.20	0.00	0.00	0.03	0.03	0.00	0.01	0.01	—	28.9	28.9	< 0.005	< 0.005	0.10	29.4
Vendor	< 0.005	< 0.005	0.06	0.02	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	—	41.3	41.3	< 0.005	0.01	0.09	43.3
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	—	_
Worker	0.02	0.02	0.02	0.16	0.00	0.00	0.03	0.03	0.00	0.01	0.01	—	25.6	25.6	< 0.005	< 0.005	< 0.005	26.0
Vendor	< 0.005	< 0.005	0.06	0.02	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	—	41.4	41.4	< 0.005	0.01	< 0.005	43.3
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily			—	—	—	_	—	—	—	_	—	—	_	—	—	—	_	—
Worker	0.01	0.01	0.01	0.07	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	—	12.1	12.1	< 0.005	< 0.005	0.02	12.3
Vendor	< 0.005	< 0.005	0.03	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	18.8	18.8	< 0.005	< 0.005	0.02	19.7
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	2.00	2.00	< 0.005	< 0.005	< 0.005	2.04
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	3.12	3.12	< 0.005	< 0.005	< 0.005	3.27
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.8. Building Construction (2027) - Mitigated

Location	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	_	—	_	—	_	_	—	—	—	_	_	_	_	_	_	_	_
Daily, Summer (Max)						_	_		_		_		—	—		—	_	

Off-Roa d	1.17	0.97	8.25	9.91	0.02	0.26	—	0.26	0.24	-	0.24	—	1,801	1,801	0.07	0.01	—	1,807
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	_	_	_	_	_	—	_	-	_	_	—	_	_	-	_	_	_
Off-Roa d Equipm ent	1.17	0.97	8.25	9.91	0.02	0.26		0.26	0.24	_	0.24	_	1,801	1,801	0.07	0.01	_	1,807
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	—	-	-	—	_	_	-	—	-	-	-	-	-	—	—	-	-
Off-Roa d Equipm ent	0.53	0.44	3.76	4.52	0.01	0.12	_	0.12	0.11	_	0.11	_	821	821	0.03	0.01	_	824
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—		—	—	—	—	—			—	—	—	—	—		—
Off-Roa d Equipm ent	0.10	0.08	0.69	0.82	< 0.005	0.02	_	0.02	0.02	_	0.02	_	136	136	0.01	< 0.005	_	136
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	—	_		_	—	—	—	—		_	—	—	—	—	—	_	—
Daily, Summer (Max)		_	_	_	_		_		_	_			—	-	_			
Worker	0.02	0.02	0.01	0.20	0.00	0.00	0.03	0.03	0.00	0.01	0.01	—	28.9	28.9	< 0.005	< 0.005	0.10	29.4
Vendor	< 0.005	< 0.005	0.06	0.02	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	41.3	41.3	< 0.005	0.01	0.09	43.3
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Daily, Winter (Max)	_				_	_			_	_		_	_	_	-	_	_	_
Worker	0.02	0.02	0.02	0.16	0.00	0.00	0.03	0.03	0.00	0.01	0.01	_	25.6	25.6	< 0.005	< 0.005	< 0.005	26.0
Vendor	< 0.005	< 0.005	0.06	0.02	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	41.4	41.4	< 0.005	0.01	< 0.005	43.3
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	-	—	—	—	-	-	—	—	-	-	—	-	-	-	-	-	-	—
Worker	0.01	0.01	0.01	0.07	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	12.1	12.1	< 0.005	< 0.005	0.02	12.3
Vendor	< 0.005	< 0.005	0.03	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	18.8	18.8	< 0.005	< 0.005	0.02	19.7
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	-	_	_	_	_	_	-	_	_	-	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	2.00	2.00	< 0.005	< 0.005	< 0.005	2.04
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	3.12	3.12	< 0.005	< 0.005	< 0.005	3.27
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.9. Building Construction (2028) - Unmitigated

Location	TOG	ROG	NOx	CO		PM10E	PM10D	PM10T	PM2.5E		PM2.5T		NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—	_	-
Daily, Summer (Max)		—	—	—	—	—	—				—					—	—	—
Daily, Winter (Max)		—	—	-	—	—	—	—	—		—		—			—	—	—
Off-Roa d Equipm ent	1.12	0.93	7.89	9.88	0.02	0.23		0.23	0.21		0.21		1,801	1,801	0.07	0.01		1,807
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00 74	0.00

Average Daily	—	_	—	-	-	_	_	-	-	-	_	-	-	-	—	—	_	-
Off-Roa d Equipm ent	0.19	0.16	1.37	1.72	< 0.005	0.04		0.04	0.04	_	0.04		314	314	0.01	< 0.005	_	315
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	-	-	-	-	-	-	-	-	-	-	_	_	_	-	-	-	—
Off-Roa d Equipm ent	0.04	0.03	0.25	0.31	< 0.005	0.01		0.01	0.01		0.01	_	51.9	51.9	< 0.005	< 0.005		52.1
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-
Daily, Summer (Max)	_	-	—	_	-	-	_	_	-	-	-	-	-	-	-	-	-	-
Daily, Winter (Max)	_	-	—	-	_	-	—	_	-	_	-	_	_	-	-	_	_	-
Worker	0.02	0.02	0.01	0.15	0.00	0.00	0.03	0.03	0.00	0.01	0.01	_	25.1	25.1	< 0.005	< 0.005	< 0.005	25.5
Vendor	< 0.005	< 0.005	0.06	0.02	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	40.3	40.3	< 0.005	0.01	< 0.005	42.2
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	-	-	_	-	-	—	_	-	-	-	-	-	-	-	-	—	-	-
Worker	< 0.005	< 0.005	< 0.005	0.03	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	4.53	4.53	< 0.005	< 0.005	0.01	4.61
Vendor	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-	7.02	7.02	< 0.005	< 0.005	0.01	7.35
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	—	_	-	-	—	_	_	_	—	-	-	-	-	_	_	-
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	-	0.75	0.75	< 0.005	< 0.005	< 0.005	0.76
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-	1.16	1.16	< 0.005	< 0.005	< 0.005	1.22
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 31 / 81	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00

3.10. Building Construction (2028) - Mitigated

	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T		PM2.5D		BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	—	—	_	_	_	—	—	—	—	—	—	—	—	_	—	-	—
Daily, Summer (Max)		-	-	_	_	-	-	-	-	_		-	-	-	-	-	-	
Daily, Winter (Max)	—	—	—	—	_	_	_	—	_	—	—	—	_	—	_	—	—	_
Off-Roa d Equipm ent	1.12	0.93	7.89	9.88	0.02	0.23	-	0.23	0.21	_	0.21	_	1,801	1,801	0.07	0.01	_	1,807
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	-	_	-	_	_	-	-	-	-	_	-	-	-	_	_	-	_
Off-Roa d Equipm ent	0.19	0.16	1.37	1.72	< 0.005	0.04	-	0.04	0.04		0.04	-	314	314	0.01	< 0.005	_	315
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	-
Off-Roa d Equipm ent	0.04	0.03	0.25	0.31	< 0.005	0.01	-	0.01	0.01	-	0.01	_	51.9	51.9	< 0.005	< 0.005	-	52.1
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Daily, Summer (Max)	_	_	-	_	-	-	_	_	— B-75	_	_	_	_	_	-	_	_	_

Daily, Winter (Max)				_	_	_			_	_		_	_	_	-		_	-
Worker	0.02	0.02	0.01	0.15	0.00	0.00	0.03	0.03	0.00	0.01	0.01	_	25.1	25.1	< 0.005	< 0.005	< 0.005	25.5
Vendor	< 0.005	< 0.005	0.06	0.02	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	40.3	40.3	< 0.005	0.01	< 0.005	42.2
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	-	-	-	—	—	—	-	—	-	—	-	-	—	-	-
Worker	< 0.005	< 0.005	< 0.005	0.03	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	4.53	4.53	< 0.005	< 0.005	0.01	4.61
Vendor	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	7.02	7.02	< 0.005	< 0.005	0.01	7.35
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	-	—	—	—	—	-	—	—	—	-	—	_	—	—	—
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	0.75	0.75	< 0.005	< 0.005	< 0.005	0.76
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	1.16	1.16	< 0.005	< 0.005	< 0.005	1.22
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.11. Paving (2028) - Unmitigated

Location	TOG	ROG	NOx	со		PM10E	PM10D	PM10T	PM2.5E	PM2.5D			NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	—	—	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)		—	—	-	—	—	—	_	—	_	—	—	—	—	—	—		—
Off-Roa d Equipm ent	0.51	0.43	4.13	6.47	0.01	0.15		0.15	0.13		0.13		991	991	0.04	0.01		995
Paving	0.26	0.26	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Onsite	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	-	_	—	-	_	-	_	-	-	_	—	_	-	-	—	_	-
Off-Roa d Equipm ent	0.02	0.01	0.12	0.20	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	29.9	29.9	< 0.005	< 0.005	_	30.0
Paving	0.01	0.01	_	_	-	_	_	_	_	_	-	_	—	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	-	_	_	_	_	_	_	_	—	_	_	_	_	_
Off-Roa d Equipm ent	< 0.005	< 0.005	0.02	0.04	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	4.95	4.95	< 0.005	< 0.005	_	4.96
Paving	< 0.005	< 0.005	—	_	—	_	_	—	—	_	—	_	—	—	—	_	_	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	-	-	_	-	_	-	-	-	-	-	-	_	-	_	_	_
Daily, Winter (Max)		—	_	_	_	—	_	_	_	_	_	_	-	_	_	_	_	_
Worker	0.07	0.07	0.05	0.53	0.00	0.00	0.10	0.10	0.00	0.02	0.02	-	90.4	90.4	< 0.005	< 0.005	0.01	91.9
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	-	_	-	_	_	_	-	-	-	_	-	-	-	_	-	_	_
Worker	< 0.005	< 0.005	< 0.005	0.02	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	2.82	2.82	< 0.005	< 0.005	< 0.005	2.87
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 B-77	0.00	0.00	-	0.00	0.00	0.00	0.00	0.98	0.00

Annual	-	_	_	-	-	-	_	_	_	_	_	_	-	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	-	0.47	0.47	< 0.005	< 0.005	< 0.005	0.48
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.12. Paving (2028) - Mitigated

Location		ROG	NOx	со	SO2		PM10D	PM10T		PM2.5D			NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	_	-	_	_	_	_	_	-	_	_	_	-	-	-	-	_	-
Daily, Summer (Max)	—	-	-	-	-	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	-	-	-	-	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Roa d Equipm ent	0.51	0.43	4.13	6.47	0.01	0.15		0.15	0.13		0.13		991	991	0.04	0.01	-	995
Paving	0.26	0.26	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	-	-	-	_	_	-	_	_	_	_		_	-	-	-	-	-	-
Off-Roa d Equipm ent	0.02	0.01	0.12	0.20	< 0.005	< 0.005		< 0.005	< 0.005		< 0.005		29.9	29.9	< 0.005	< 0.005	-	30.0
Paving	0.01	0.01	-	_	—	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_			_			_	_	_	_	_	_	_

Off-Roa d	< 0.005	< 0.005	0.02	0.04	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	4.95	4.95	< 0.005	< 0.005	_	4.96
Paving	< 0.005	< 0.005	_	_	_	—	—	_	—	—	—	—	_	_	—	_	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	—	_	_	_	_	_	_	_	_	_	_	—
Daily, Summer (Max)	—	—	—	—	_	—	—	—	—	—	—	—	—	_	_	—	—	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_
Worker	0.07	0.07	0.05	0.53	0.00	0.00	0.10	0.10	0.00	0.02	0.02	—	90.4	90.4	< 0.005	< 0.005	0.01	91.9
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	-	—	—	-	-	-	—	—	_	—	—	-	-	-	_	-	-	-
Worker	< 0.005	< 0.005	< 0.005	0.02	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	2.82	2.82	< 0.005	< 0.005	< 0.005	2.87
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_			_	_	_	_			_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	0.47	0.47	< 0.005	< 0.005	< 0.005	0.48
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.13. Architectural Coating (2028) - Unmitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

Daily, Summer (Max)			_	_	_	_		_	_	_	_	_	_					_
Daily, Winter (Max)	_	—	_	_	_	-	—	_	_	_	—	—	_	—	_	_	_	_
Off-Roa d Equipm ent	0.13	0.11	0.81	1.12	< 0.005	0.02		0.02	0.01		0.01		134	134	0.01	< 0.005		134
Architect ural Coating s	6.04	6.04	-	_	_	-		-	-	_	-	-	-					-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	-	-	-	-	-	_	-	-	-	-	-	-	_	_	_	_	-
Off-Roa d Equipm ent	< 0.005	< 0.005	0.02	0.03	< 0.005	< 0.005		< 0.005	< 0.005	-	< 0.005	-	4.02	4.02	< 0.005	< 0.005		4.04
Architect ural Coating s	0.18	0.18	_	-	_	-		-	_	-			_					_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	-
Off-Roa d Equipm ent	< 0.005	< 0.005	< 0.005	0.01	< 0.005	< 0.005		< 0.005	< 0.005	_	< 0.005	_	0.67	0.67	< 0.005	< 0.005		0.67
Architect ural Coating s	0.03	0.03	_	_	_			_	_	_		_	_					_

Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	—	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_
Daily, Winter (Max)		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.03	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	5.02	5.02	< 0.005	< 0.005	< 0.005	5.10
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	_	_	_	_	_	_	_	_	_	_	—	_	—
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	0.16	0.16	< 0.005	< 0.005	< 0.005	0.16
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	0.03	0.03	< 0.005	< 0.005	< 0.005	0.03
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.14. Architectural Coating (2028) - Mitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	-	—	—	—	—	—	—	—	—	—	—	—	—	—		—
Daily, Summer (Max)		—	—	—	—	—			—			—	_	—	—	—	_	_
Daily, Winter (Max)									— B-81								 82	

Off-Roa Equipmer		0.11	0.81	1.12	< 0.005	0.02	—	0.02	0.01	—	0.01	_	134	134	0.01	< 0.005	—	134
Architect ural Coating s	6.04	6.04								_	_		_	_	_			
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	-	-	-	—	_	_	-	_	_	-	-	-	-	-	_	_	_
Off-Roa d Equipm ent	< 0.005	< 0.005	0.02	0.03	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	4.02	4.02	< 0.005	< 0.005		4.04
Architect ural Coating s	0.18	0.18	_	—	_	_	_	_	_	_	_	_	_	_	_	—		_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	-	_	-	-	-	-	-	_	-	—	-	_	-	-	-	_	_
Off-Roa d Equipm ent	< 0.005	< 0.005	< 0.005	0.01	< 0.005	< 0.005		< 0.005	< 0.005		< 0.005	_	0.67	0.67	< 0.005	< 0.005		0.67
Architect ural Coating s	0.03	0.03	_	—	-			—			—	_	_	—	—			
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)					_								_					

Daily, Winter (Max)	_	_	_	_	_		_			_	_	_	_	_	_	_	_	-
Worker	< 0.005	< 0.005	< 0.005	0.03	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	5.02	5.02	< 0.005	< 0.005	< 0.005	5.10
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	-	-	-	-	-	-	-	_	-	_	-	-	-	-	-	-	_	-
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	0.16	0.16	< 0.005	< 0.005	< 0.005	0.16
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	0.03	0.03	< 0.005	< 0.005	< 0.005	0.03
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

4. Operations Emissions Details

4.1. Mobile Emissions by Land Use

4.1.1. Unmitigated

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)		—	—	—	—	—	—	—	—	_		—	—	—	—	—	—	_
Element ary School	0.89	0.83	0.86	7.49	0.02	0.01	1.56	1.58	0.01	0.40	0.41	—	1,833	1,833	0.06	0.08	5.76	1,865

Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.89	0.83	0.86	7.49	0.02	0.01	1.56	1.58	0.01	0.40	0.41	-	1,833	1,833	0.06	0.08	5.76	1,865
Daily, Winter (Max)		-	—	—	-	—	—	_	-	_	_	_	_	_	_	_	_	_
Element ary School	0.81	0.74	0.98	6.07	0.02	0.01	1.56	1.58	0.01	0.40	0.41	_	1,677	1,677	0.07	0.09	0.15	1,705
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.81	0.74	0.98	6.07	0.02	0.01	1.56	1.58	0.01	0.40	0.41	_	1,677	1,677	0.07	0.09	0.15	1,705
Annual	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	-
Element ary School	0.11	0.10	0.12	0.82	< 0.005	< 0.005	0.20	0.20	< 0.005	0.05	0.05	_	204	204	0.01	0.01	0.29	207
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.11	0.10	0.12	0.82	< 0.005	< 0.005	0.20	0.20	< 0.005	0.05	0.05	_	204	204	0.01	0.01	0.29	207

4.1.2. Mitigated

Land	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Use																		

Daily, Summer (Max)		_	_	_	-			_	_	_	_	_	_	_	_	_	_	_
Element ary School	0.89	0.83	0.86	7.49	0.02	0.01	1.56	1.58	0.01	0.40	0.41	—	1,833	1,833	0.06	0.08	5.76	1,865
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.89	0.83	0.86	7.49	0.02	0.01	1.56	1.58	0.01	0.40	0.41	-	1,833	1,833	0.06	0.08	5.76	1,865
Daily, Winter (Max)		_	_	_	_	_	_	_	_	_	_	_	_	_	—	_	_	_
Element ary School	0.81	0.74	0.98	6.07	0.02	0.01	1.56	1.58	0.01	0.40	0.41	—	1,677	1,677	0.07	0.09	0.15	1,705
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.81	0.74	0.98	6.07	0.02	0.01	1.56	1.58	0.01	0.40	0.41	-	1,677	1,677	0.07	0.09	0.15	1,705
Annual	_	—	-	—	—	—	—	—	—	—	—	—	—	—	-	—	—	—
Element ary School	0.11	0.10	0.12	0.82	< 0.005	< 0.005	0.20	0.20	< 0.005	0.05	0.05	—	204	204	0.01	0.01	0.29	207
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.11	0.10	0.12	0.82	< 0.005	< 0.005	0.20	0.20	< 0.005	0.05	0.05	_	204	204	0.01	0.01	0.29	207

4.2. Energy

4.2.1. Electricity Emissions By Land Use - Unmitigated

Land Use	TOG	ROG	NOx	CO	SO2			1		PM2.5D			NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	-	-	_	_	_	_		_	-	—	-	—	-	-
Element ary School	—	—	—	—	_	_	—	—	—	—		—	170	170	0.01	< 0.005	—	171
Other Asphalt Surfaces	_			_	_	-	—						0.00	0.00	0.00	0.00	_	0.00
Parking Lot	-	-	-	-	-	-	—	_	—	—	_	-	25.5	25.5	< 0.005	< 0.005	-	25.6
Total	-	_	_	_	_	_	_	_	_	_	_	_	196	196	0.01	< 0.005	_	196
Daily, Winter (Max)	-	_	-	_	-	_	_					_	-	_	_	-	-	_
Element ary School	_	-	-	-	-	-	—	_	_		_	_	170	170	0.01	< 0.005	_	171
Other Asphalt Surfaces	_	_	-	-	-	-	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
Parking Lot	-	-	-	-	-	-	-	—	_	—	_	-	25.5	25.5	< 0.005	< 0.005	-	25.6
Total	-	_	_	_	_	_	_	_	_	_	_	_	196	196	0.01	< 0.005	-	196
Annual	-	_	_	_	_	_	_	_	_	_	_	—	_	_	-	_	_	_
Element ary School				_	_		_					_	28.2	28.2	< 0.005	< 0.005	-	28.3

Other Asphalt Surfaces		_	_	—									0.00	0.00	0.00	0.00	_	0.00
Parking Lot			—	—					_				4.22	4.22	< 0.005	< 0.005		4.24
Total	_	_	_	_	_	_	_	_	_	_	_	_	32.4	32.4	< 0.005	< 0.005	_	32.5

4.2.2. Electricity Emissions By Land Use - Mitigated

Land Use	TOG	ROG	NOx	со	SO2	PM10E		•		PM2.5D			NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	-	-	-	-	_	-	_	_	_	_	-	-	-	-	-	-	_
Element ary School	—	-	—	_	_		—	—		—	—	—	101	101	0.01	< 0.005	—	102
Other Asphalt Surfaces	—	—		_	-		—	—		—	—	—	0.00	0.00	0.00	0.00	—	0.00
Parking Lot	_	-	-	—	—	-	-	_	—	—	—	-	25.5	25.5	< 0.005	< 0.005	_	25.6
Total	_	_	-	_	-	-	_	_	_	_	_	_	127	127	0.01	< 0.005	-	127
Daily, Winter (Max)	_	-	—	-	-	_	-	—		—		-	_	—	-	_	—	-
Element ary School	—	-	—	-	-		—	—	—	—	—	—	101	101	0.01	< 0.005	—	102
Other Asphalt Surfaces	_	_	_	_	_								0.00	0.00	0.00	0.00		0.00
Parking Lot	-	-	-	_	-	-	-	_	_	_	_	-	25.5	25.5	< 0.005	< 0.005	—	25.6
Total	_	_	_	_	_	_	_	_	— В-87	_	_	_	127	127	0.01	< 0.005		127

Annual	—			—			—	—	—			—	—	—	—	—	—	—
Element ary School	—			—	—		—	_	_	_		—	16.8	16.8	< 0.005	< 0.005	—	16.8
Other Asphalt Surfaces				_								_	0.00	0.00	0.00	0.00		0.00
Parking Lot	_	_	—	—	—			_	_	_	_	_	4.22	4.22	< 0.005	< 0.005	—	4.24
Total	_	_	_	_	_	_	_	_	_	_	_	_	21.0	21.0	< 0.005	< 0.005	_	21.1

4.2.3. Natural Gas Emissions By Land Use - Unmitigated

Land Use	TOG	ROG	NOx	CO	SO2				PM2.5E			1	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	-	_	_	-	-	—	—	—	_		—	-	—	-	-	-	—
Element ary School	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	-	0.00	0.00	0.00	0.00	-	0.00
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	_	0.00	-	0.00	0.00	0.00	0.00	-	0.00
Total	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Daily, Winter (Max)		_	_	_	_	_			_				_	_		_	_	_
Element ary School	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		0.00	_	0.00	0.00	0.00	0.00		0.00

Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		0.00		0.00	0.00	0.00	0.00		0.00
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00		0.00
Total	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	0.00	0.00	0.00	0.00	—	0.00
Annual	—	—	—	—	-	—	—	—	—	—	—	—	—	—	—	—	—	—
Element ary School	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	0.00	0.00	0.00	0.00		0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	-	0.00	0.00	0.00	0.00	_	0.00
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Total	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00

4.2.4. Natural Gas Emissions By Land Use - Mitigated

Land Use	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	_		—						—			—	_
Element ary School	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	—	0.00
Total	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00

Daily, Winter (Max)		_	_	_	_	—	—	—	—	_		—	—	—	—	—	—	-
Element ary School	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00		0.00	—	0.00	0.00	0.00	0.00	—	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00		0.00	-	0.00	0.00	0.00	0.00	_	0.00
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	-	0.00	0.00	0.00	0.00	-	0.00
Total	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Annual	_	-	—	_	_	_	—	—	_	_	_	_	_	_	_	_	_	—
Element ary School	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00		0.00	—	0.00	0.00	0.00	0.00	—	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00		0.00	—	0.00	0.00	0.00	0.00	—	0.00
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00		0.00	_	0.00	0.00	0.00	0.00	_	0.00
Total	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00

4.3. Area Emissions by Source

4.3.1. Unmitigated

Source	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)		—	—	—		—	—	—			_	—		_			—	—
Consum er Product s	0.25	0.25							— В-90								 91	

Architect Coatings		0.02	_	—	_	—	—	_	—	—	_	-	_	-	-	_	_	_
Landsca pe Equipm ent	0.09	0.08	< 0.005	0.50	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	_	2.05	2.05	< 0.005	< 0.005	_	2.06
Total	0.36	0.35	< 0.005	0.50	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	_	2.05	2.05	< 0.005	< 0.005	_	2.06
Daily, Winter (Max)		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Consum er Product s	0.25	0.25	_	—	_	—	—	_	—	—	_	_		_	_	—	_	_
Architect ural Coating s	0.02	0.02	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	0.27	0.27	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_
Consum er Product s	0.05	0.05	-		-			-			-	_		-	-		-	-
Architect ural Coating s	< 0.005	< 0.005	_		_			_			_	_		_				_
Landsca pe Equipm ent	0.01	0.01	< 0.005	0.04	< 0.005	< 0.005		< 0.005	< 0.005		< 0.005	_	0.17	0.17	< 0.005	< 0.005	_	0.17
Total	0.06	0.06	< 0.005	0.04	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	0.17	0.17	< 0.005	< 0.005	_	0.17

4.3.2. Mitigated

Source	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)		—	—	—	—	—		—	—	—	—	—	—	—	—		—	_
Consum er Product s	0.25	0.25	_	_	_	_		_		_	_	_	_		_	_		_
Architect ural Coating s	0.02	0.02			—	_		_		—		—						
Landsca pe Equipm ent	0.09	0.08	< 0.005	0.50	< 0.005	< 0.005		< 0.005	< 0.005	_	< 0.005	_	2.05	2.05	< 0.005	< 0.005		2.06
Total	0.36	0.35	< 0.005	0.50	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	2.05	2.05	< 0.005	< 0.005	_	2.06
Daily, Winter (Max)		_	_	_	_	_		_	_	_	_	_	_	_	_	_		_
Consum er Product s	0.25	0.25	_	_	_	_		_	_	_	_	_	_	_	_	_		_
Architect ural Coating s	0.02	0.02			-													-
Total	0.27	0.27	—	—	—	—	_	—	_	—	—	—	—	—	—	—	—	—
Annual	—	_	_	_	_	_	_	—	_	_	_	_	_	—	_	—	_	—
Consum er Product s	0.05	0.05	—	—	—	—		—		—		—						—
Architect ural Coating s	< 0.005	< 0.005	—		-				— В-92			_					 93	_

Landsca Equipme		0.01	< 0.005	0.04	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	0.17	0.17	< 0.005	< 0.005		0.17
Total	0.06	0.06	< 0.005	0.04	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	0.17	0.17	< 0.005	< 0.005	_	0.17

4.4. Water Emissions by Land Use

4.4.1. Unmitigated

51110110	1 011010			ually, tor	" yn 101 O	initiaal) e			.,		, i i i i i i i i i i i i i i i i i i i							
Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	-	-	-	-	_	-	-	_	_	_	-	-	-	-	-	-	-
Element ary School	_	_	-	_	_	_	_	_	_	—		0.64	1.91	2.55	0.07	< 0.005	_	4.65
Other Asphalt Surfaces	_	_	_		—		_	—	—	—		0.00	0.00	0.00	0.00	0.00	_	0.00
Parking Lot	—	-	-	-	-	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	—	—	—	_	—	—	—	—	—	—	0.64	1.91	2.55	0.07	< 0.005	—	4.65
Daily, Winter (Max)	_	-	-	-	-	_	_	_	_	_	_	_	-	-	_	_	-	-
Element ary School	_	-	-	-	-	_	_	_	_	_	_	0.64	1.91	2.55	0.07	< 0.005	-	4.65
Other Asphalt Surfaces		_	-	_	_		_	_				0.00	0.00	0.00	0.00	0.00	_	0.00
Parking Lot	—	-	_	-	-	_	_	-	_	—	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	0.64	1.91	2.55	0.07	< 0.005	_	4.65
									B 02							1	94	

Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—
Element ary School				—		—	—	—	—		—	0.11	0.32	0.42	0.01	< 0.005		0.77
Other Asphalt Surfaces											_	0.00	0.00	0.00	0.00	0.00		0.00
Parking Lot		_	_	_						_		0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	0.11	0.32	0.42	0.01	< 0.005	_	0.77

4.4.2. Mitigated

		(, .e.,	j .				,	, ,,								
Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)		_	—	—		—	—	—	_	—	—	_	_	_	—	—	_	
Element ary School		—	—	—		—	—	—		—	—	0.64	1.91	2.55	0.07	< 0.005	—	4.65
Other Asphalt Surfaces		—	—	—		—	—	—		—	—	0.00	0.00	0.00	0.00	0.00		0.00
Parking Lot	_	_	—	—	—	—	—	_	—	—	—	0.00	0.00	0.00	0.00	0.00	—	0.00
Total	_	-	_	_	_	_	_	_	_	_	_	0.64	1.91	2.55	0.07	< 0.005	_	4.65
Daily, Winter (Max)		_	—	—		—	_	_	_	_	_	_	_	_	_	_	_	_
Element ary School		—	—	—		—		—		—	—	0.64	1.91	2.55	0.07	< 0.005		4.65

Other Asphalt Surfaces	_	_	_		-		_	_	_	-	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Parking Lot		—	_	_	_	_			_	_		0.00	0.00	0.00	0.00	0.00	—	0.00
Total	—	-	_	—	—	—	—	—	—	—	—	0.64	1.91	2.55	0.07	< 0.005	-	4.65
Annual	—	—	_	—	—	—	—	—	_	—	—	—	—	—	—	—	—	_
Element ary School	_	—	—	—	—			_	—	—		0.11	0.32	0.42	0.01	< 0.005	—	0.77
Other Asphalt Surfaces		—	—	—		—			—	—		0.00	0.00	0.00	0.00	0.00	—	0.00
Parking Lot		_	_	_	_	_			_	_		0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_		_	_	_	_	_		_		0.11	0.32	0.42	0.01	< 0.005	_	0.77

4.5. Waste Emissions by Land Use

4.5.1. Unmitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	_	_	—	—	—	—	—	—	_	—	—	—	—	—	_	—
Element ary School	_	—	—	—				_				8.03	0.00	8.03	0.80	0.00		28.1
Other Asphalt Surfaces	—	—	—	—	—	—			—			0.00	0.00	0.00	0.00	0.00		0.00
Parking Lot		_	_	_	_	_						0.00	0.00	0.00	0.00	0.00		0.00

Total		_	—	—	_	—	—	—	_	—	—	8.03	0.00	8.03	0.80	0.00	_	28.1
Daily, Winter (Max)		—	—		—	—		—		—	—	—	—	—	—	—	—	—
Element ary School		—	—		—	—		—		—	—	8.03	0.00	8.03	0.80	0.00	—	28.1
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Parking Lot	_	_	_	—	_	_	_	_	—	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total		_	—	—	_	—	—	—	—	—	—	8.03	0.00	8.03	0.80	0.00	_	28.1
Annual		—	—	—	—	_	—	—	—	—	_	_	-	—	-	_	_	—
Element ary School	_	_	_	—	_	—	_	_	_	_	_	1.33	0.00	1.33	0.13	0.00	_	4.65
Other Asphalt Surfaces						—						0.00	0.00	0.00	0.00	0.00		0.00
Parking Lot		_		_	_				_		_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total		_	_	_	_	_	_	_	_	_	_	1.33	0.00	1.33	0.13	0.00	_	4.65

4.5.2. Mitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)		—	—	—	_	—	_	_		_		_	—		_	_		—
Element ary School										—		8.03	0.00	8.03	0.80	0.00		28.1

Other Asphalt Surfaces												0.00	0.00	0.00	0.00	0.00		0.00
Parking Lot	—	—	—	_	—	-	_	_	_	—	—	0.00	0.00	0.00	0.00	0.00	-	0.00
Total	_	_	_	_	_	_		_	_	_	_	8.03	0.00	8.03	0.80	0.00	_	28.1
Daily, Winter (Max)		—	—	_	—	—		_	—	—	_	—	—	—	—	—	—	—
Element ary School	_	_	_		_	_			_	_	_	8.03	0.00	8.03	0.80	0.00	_	28.1
Other Asphalt Surfaces	_	_	_	_	—	_			_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Parking Lot	—	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	8.03	0.00	8.03	0.80	0.00	-	28.1
Annual	—	—	—	—	—	_	—	—	_	—	—	—	-	_	-	—	—	—
Element ary School		—			—	—		_	—	—	—	1.33	0.00	1.33	0.13	0.00	—	4.65
Other Asphalt Surfaces	_	_	_		_	_		_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Parking Lot		—	—		—	—	—	_	—	—	_	0.00	0.00	0.00	0.00	0.00	—	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	1.33	0.00	1.33	0.13	0.00	_	4.65

4.6. Refrigerant Emissions by Land Use

4.6.1. Unmitigated

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	_	—	_	_	—		—	—	—	—	—	—	—	—	_	—	—
Element ary School	—	—	—	—	—	—			—	—		—	—	—	—	—	0.04	0.04
Total	—	—	—	—	—	—		—	—	—	_	—	—	—	—	—	0.04	0.04
Daily, Winter (Max)		_	_	_	_	—		_	_					_	—	_		_
Element ary School	—	—	—	—	—	—		_	—	—		—	—	—	—	—	0.04	0.04
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0.04	0.04
Annual	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	—
Element ary School		_	_	_	_											_	0.01	0.01
Total	_	_	—	_	—	_		—	_	—	—	_	—	_	_	_	0.01	0.01

4.6.2. Mitigated

Land Use	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—
Element ary School			_		_	_	_	_	_		_	_	_	_	_	_	0.04	0.04
Total	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	0.04	0.04

Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—
Element ary School	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.04	0.04
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0.04	0.04
Annual	_	_	—	—	—	_	—	—	—	—	_	—	—	_	_	_	—	—
Element ary School	—		—		_	—	—	—	—		—		—	—	—	—	0.01	0.01
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0.01	0.01

4.7. Offroad Emissions By Equipment Type

4.7.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

			, ,		,			<u> </u>	,	<u> </u>								
Equipm ent Type	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	_	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—	—
Total	_	_	—	—	—	—	_	—	—	—	—	_	_	_	—	—	—	_
Daily, Winter (Max)		_	_	_														
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	—	_	_	_	_	—	_	_	—	_	_	_	_	_	—	_

4.7.2. Mitigated

Equipm Type	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	_	—	—	—	_	_	—	—	—	—	_	—	—	_	—	—
Daily, Winter (Max)		—		—						—		—						
Total	_	—	_	—	_	—	—	_	—	—	—	—	_	—	—	_	—	—
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.8. Stationary Emissions By Equipment Type

4.8.1. Unmitigated

Equipm ent Type	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—		—	—			_	—	—	_	_	—		—	—	—	—	
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—		—	—		—	_	—	_	_				—		_	—	_
Total	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—	_	—	—
Annual	_		_	_		_		_	_			_		_	_	_	_	_
Total	_		_	_		_	_	_	_	_	_	_		_	_	_	_	_

Equipm ent Type	TOG	ROG	NOx	СО		PM10E	PM10D			PM2.5D			NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—		—		—	—	—	—	—	—			
Total	_	—	_	—	—	—	_	—	—	—	_	_		_	—		—	_
Daily, Winter (Max)		_		_	_	_		—	_		_						—	
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_		_		_	_	_	_	_	_		_	_

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

4.9. User Defined Emissions By Equipment Type

4.9.1. Unmitigated

		<u> </u>		,	/	/			,	<u>,</u>								
Equipm ent Type	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—		—	—	—	—	—	—		_		—				—	—	
Total	—	—	—	—	_	—	—	—	—	—	—	—	—	—	—	_	—	—
Daily, Winter (Max)	—		—	—			—	—		_		—		—			—	_
Total	—	_	_	—	_	—	—	—	—	—		_	_	—	_	_	_	_
Annual	_		_	_	_	_	_	_		_		_		_		_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.9.2. Mitigated

Equipm ent Type	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	_	_	_	_	_	_		_	_		_	_	_	_	_	_	—
Total	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—	—
Daily, Winter (Max)						—	—		—	—		_	_				—	_
Total	—	—	_	—	_	—	—	—	—	—	—	—	—	—	_	_	—	—
Annual	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_
Total	_	_	_	_	_	_	—		_	—		_	_	_	_	_	—	—

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

Vegetati on	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—		—	—	—	—	—	—			—	—	—	—	—	—	—	—
Total	—	_	—	—	_	—	_	—	—	—	_	—	—	_	—	—	_	—
Daily, Winter (Max)	—			—	—	—	_	—	_		_	—	—		—		_	—
Total	_			—	_	—	—	_	—	—	—	_	_	_	_	_	—	—
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_
Total	_		_	_	_	_		_	— B-102	_	_	_	_	_	_	_	_	_

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

		``	,	3,	,	/		· ·	,		/	/						
Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	_	_	—	—	—	—	—	—	—		—	—	—	—	—	—	—
Total	_	_	—	—	_	—	_	—	—	—	_	_	—	—	—	_	—	—
Daily, Winter (Max)		_	_	_	_										_			
Total	_	_	—	—	_	_	_	_	_	—	_	_	_	_	_	_	—	—
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

		· · ·			<i>.</i>	· · · ·		· ·			-	· /						
Species	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)		—		—	_	—	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	—	—	—	—	—	—	_	—	—	—	—	_	—	—	—	_	—	—
Subtotal	_	_	_	-	_	—	_	_	_	_	_	-	_	_	_	_	_	_
Sequest ered	—	-	-	-	_	-	—	_	_	_	_	-	_	_	_	—	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d		_	_	-	_	_	_	_	_	_	_	_	_	_		_	_	_
Subtotal	_	_	_	_	_	_		_	_	_	_	_	_	_	_		_	
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Daily, Winter (Max)	_		_	_	_	_	_			_	_	_				_		—
Avoided	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—		—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	_	—	—	—	_		—
Sequest ered	_	_	—	_	_	—	_	_	_	_	_	-	_	_	_	_	—	_
Subtotal	—	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—		—
Remove d			_									_				_		
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	_
—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	—	—
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	—	—	—	_	_	_	—	_	_	_	_	_	—
Subtotal	_	_	_	_	_	_	—	_	_	_	_	_	_	_	_	_		—
Sequest ered	—	—	—	—	—	—	—	—	—	—	—	-	—	—	—	—	—	_
Subtotal	_	—	—	—	—	—	—	—	—	—	_	—	—	—	—	_	—	—
Remove d	—	—	—	—	—	—	—	—	—	—	-	-	—	—	—	-	—	-
Subtotal	_	—	_	_	_	_	—	—	—	_	_	_	—	_	_	_		
—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	—

4.10.4. Soil Carbon Accumulation By Vegetation Type - Mitigated

Vegetati on	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)																		_
Total		_	_	_	_	_	_		_	_	_	_		_	_	_	_	_
																	105	

Daily, Winter (Max)	_	_	_	_	_	_	_			_	_	_	_		_	_	_	—
Total	—	—	—	—	—				—	—	—	—	—				—	—
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

4.10.5. Above and Belowground Carbon Accumulation by Land Use Type - Mitigated

		ROG								PM2.5D			NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	_	_		—	_	—	—	—	—	—	—	
Total	—	_	_	—	—	—	—	—	—	—	—	—	—	—	—	_	—	—
Daily, Winter (Max)		—															—	
Total	_	_	_	_	_	_	_	_		_	_	_	_	_		_	_	
Annual	_	_	_	_	_	_	_	_		_	_		_	_	_		_	
Total	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

4.10.6. Avoided and Sequestered Emissions by Species - Mitigated

Species	TOG	ROG	NOx	СО	SO2	PM10E	PM10D		PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)		—	—	—		—	—	—	—		—	—	—	—	—	—		—
Avoided	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	_	_	_	—	—	—	—	—	—	—	—	—	—	—	—	—
Sequest ered			_	_	—				— В-105								 106	
									62 / 81									

Subtotal		_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Remove d	_	-	_	-	-	_	_	_	_	-	_	-	_	_	_	_	—	_
Subtotal	—	_	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—	_
_	—	—	—	—	—	—	—	—	_	-	_	—	_	—	—	—	_	—
Daily, Winter (Max)		_	—		_	_	—			—		—				—	—	—
Avoided	—		—	—	—	—	_	—	—	—	—	—	—	—		—	—	—
Subtotal		_	_	—	—	—	—	—	—	-	—	—	—	—	_	_	_	—
Sequest ered		-	-	-	-	—	_	—	—	-	—	-	—	—	—	—	—	—
Subtotal		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d		-	_	-	-	-	_	-	—	-	—	-	_	_	—	—		—
Subtotal		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—
Subtotal		_	_	—	—	_	_	—	_	-	—	_	_	_	_	_	—	_
Sequest ered		-	-	-	-	—	—	-	_	-	—	-	_	—	_	—		—
Subtotal		-	-	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_
Remove d		_	_	—	—	—	—	—	—	—	—	—	—	—	_			—
Subtotal		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
—	_	_	_	_	_	_	_	—	_	-	—	_	_	_	_	_	_	—

5. Activity Data

5.1. Construction Schedule

Phase Name	Phase Type	Start Date	End Date	Days Per Week	Work Days per Phase	Phase Description
Demolition	Demolition	4/1/2027	5/3/2027	5.00	23.0	—
Site Preparation	Site Preparation	5/4/2027	5/5/2027	5.00	2.00	—
Grading	Grading	5/6/2027	5/12/2027	5.00	5.00	—
Building Construction	Building Construction	5/13/2027	3/29/2028	5.00	230	—
Paving	Paving	3/15/2028	3/29/2028	5.00	11.0	—
Architectural Coating	Architectural Coating	3/15/2028	3/29/2028	5.00	11.0	_

5.2. Off-Road Equipment

5.2.1. Unmitigated

Phase Name	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
Demolition	Tractors/Loaders/Back hoes	Diesel	Average	3.00	8.00	84.0	0.37
Demolition	Rubber Tired Dozers	Diesel	Average	1.00	8.00	367	0.40
Demolition	Concrete/Industrial Saws	Diesel	Average	1.00	8.00	33.0	0.73
Site Preparation	Graders	Diesel	Average	1.00	8.00	148	0.41
Site Preparation	Tractors/Loaders/Back hoes	Diesel	Average	1.00	8.00	84.0	0.37
Site Preparation	Rubber Tired Dozers	Diesel	Average	1.00	7.00	367	0.40
Grading	Graders	Diesel	Average	1.00	8.00	148	0.41
Grading	Rubber Tired Dozers	Diesel	Average	1.00	8.00	367	0.40
Grading	Tractors/Loaders/Back hoes	Diesel	Average	2.00	7.00	84.0	0.37
Building Construction	Cranes	Diesel	Average	1.00	6.00	367	0.29
Building Construction	Forklifts	Diesel	Average	1.00	6.00	82.0	0.20

Building Construction	Tractors/Loaders/Back hoes	Diesel	Average	1.00	6.00	84.0	0.37
Building Construction	Generator Sets	Diesel	Average	1.00	8.00	14.0	0.74
Building Construction	Welders	Diesel	Average	3.00	8.00	46.0	0.45
Paving	Tractors/Loaders/Back hoes	Diesel	Average	1.00	8.00	84.0	0.37
Paving	Cement and Mortar Mixers	Diesel	Average	1.00	6.00	10.0	0.56
Paving	Pavers	Diesel	Average	1.00	6.00	81.0	0.42
Paving	Rollers	Diesel	Average	1.00	7.00	36.0	0.38
Paving	Paving Equipment	Diesel	Average	1.00	8.00	89.0	0.36
Architectural Coating	Air Compressors	Diesel	Average	1.00	6.00	37.0	0.48

5.2.2. Mitigated

Phase Name	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
Demolition	Tractors/Loaders/Back hoes	Diesel	Average	3.00	8.00	84.0	0.37
Demolition	Rubber Tired Dozers	Diesel	Average	1.00	8.00	367	0.40
Demolition	Concrete/Industrial Saws	Diesel	Average	1.00	8.00	33.0	0.73
Site Preparation	Graders	Diesel	Average	1.00	8.00	148	0.41
Site Preparation	Tractors/Loaders/Back hoes	Diesel	Average	1.00	8.00	84.0	0.37
Site Preparation	Rubber Tired Dozers	Diesel	Average	1.00	7.00	367	0.40
Grading	Graders	Diesel	Average	1.00	8.00	148	0.41
Grading	Rubber Tired Dozers	Diesel	Average	1.00	8.00	367	0.40
Grading	Tractors/Loaders/Back hoes	Diesel	Average	2.00	7.00	84.0	0.37
Building Construction	Cranes	Diesel	Average	1.00	6.00	367	0.29
Building Construction	Forklifts	Diesel	Average	1.00	6.00	82.0	0.20

Building Construction	Tractors/Loaders/Back hoes	Diesel	Average	1.00	6.00	84.0	0.37
Building Construction	Generator Sets	Diesel	Average	1.00	8.00	14.0	0.74
Building Construction	Welders	Diesel	Average	3.00	8.00	46.0	0.45
Paving	Tractors/Loaders/Back hoes	Diesel	Average	1.00	8.00	84.0	0.37
Paving	Cement and Mortar Mixers	Diesel	Average	1.00	6.00	10.0	0.56
Paving	Pavers	Diesel	Average	1.00	6.00	81.0	0.42
Paving	Rollers	Diesel	Average	1.00	7.00	36.0	0.38
Paving	Paving Equipment	Diesel	Average	1.00	8.00	89.0	0.36
Architectural Coating	Air Compressors	Diesel	Average	1.00	6.00	37.0	0.48

5.3. Construction Vehicles

5.3.1. Unmitigated

Phase Name	Тгір Туре	One-Way Trips per Day	Miles per Trip	Vehicle Mix
Demolition	—	—	—	—
Demolition	Worker	13.0	11.4	LDA,LDT1,LDT2
Demolition	Vendor	10.0	7.43	HHDT,MHDT
Demolition	Hauling	1.00	20.0	HHDT
Demolition	Onsite truck	1.00	1.65	HHDT
Site Preparation	—	—	—	—
Site Preparation	Worker	8.00	7.70	LDA,LDT1,LDT2
Site Preparation	Vendor	8.00	6.80	HHDT,MHDT
Site Preparation	Hauling	0.00	20.0	HHDT
Site Preparation	Onsite truck	1.00	1.19	HHDT
Grading	—	—	—	—
Grading	Worker	8.00	7.70	LDA,LDT1,LDT2
		B-109		110

Grading	Vendor	10.0	6.80	HHDT,MHDT
Grading	Hauling	75.0	20.0	HHDT
Grading	Onsite truck	1.00	1.55	HHDT
Building Construction	_	—	—	—
Building Construction	Worker	5.00	7.70	LDA,LDT1,LDT2
Building Construction	Vendor	2.00	6.80	HHDT,MHDT
Building Construction	Hauling	0.00	20.0	HHDT
Building Construction	Onsite truck	0.00	0.00	HHDT
Paving	_	—	—	_
Paving	Worker	18.0	7.70	LDA,LDT1,LDT2
Paving	Vendor	0.00	6.80	HHDT,MHDT
Paving	Hauling	0.00	20.0	HHDT
Paving	Onsite truck	0.00	0.00	HHDT
Architectural Coating	_	—	—	_
Architectural Coating	Worker	1.00	7.70	LDA,LDT1,LDT2
Architectural Coating	Vendor	0.00	6.80	HHDT,MHDT
Architectural Coating	Hauling	0.00	20.0	HHDT
Architectural Coating	Onsite truck	0.00	0.00	HHDT

5.3.2. Mitigated

Phase Name	Тгір Туре	One-Way Trips per Day	Miles per Trip	Vehicle Mix
Demolition	—	—	—	—
Demolition	Worker	13.0	11.4	LDA,LDT1,LDT2
Demolition	Vendor	10.0	7.43	HHDT,MHDT
Demolition	Hauling	1.00	20.0	HHDT
Demolition	Onsite truck	1.00	1.65	HHDT
Site Preparation	—	—	—	—
Site Preparation	Worker	8.00 B-110	7.70	LDA,LDT1,LDT2 111

Site Preparation	Vendor	8.00	6.80	HHDT,MHDT
Site Preparation	Hauling	0.00	20.0	HHDT
Site Preparation	Onsite truck	1.00	1.19	HHDT
Grading	_	_	_	_
Grading	Worker	8.00	7.70	LDA,LDT1,LDT2
Grading	Vendor	10.0	6.80	HHDT,MHDT
Grading	Hauling	75.0	20.0	HHDT
Grading	Onsite truck	1.00	1.55	HHDT
Building Construction	—	—	—	—
Building Construction	Worker	5.00	7.70	LDA,LDT1,LDT2
Building Construction	Vendor	2.00	6.80	HHDT,MHDT
Building Construction	Hauling	0.00	20.0	HHDT
Building Construction	Onsite truck	0.00	0.00	HHDT
Paving	—	—	—	_
Paving	Worker	18.0	7.70	LDA,LDT1,LDT2
Paving	Vendor	0.00	6.80	HHDT,MHDT
Paving	Hauling	0.00	20.0	HHDT
Paving	Onsite truck	0.00	0.00	HHDT
Architectural Coating	—	—	—	—
Architectural Coating	Worker	1.00	7.70	LDA,LDT1,LDT2
Architectural Coating	Vendor	0.00	6.80	HHDT,MHDT
Architectural Coating	Hauling	0.00	20.0	HHDT
Architectural Coating	Onsite truck	0.00	0.00	HHDT

5.4. Vehicles

5.4.1. Construction Vehicle Control Strategies

Non-applicable. No control strategies activated by user.

5.5. Architectural Coatings

	Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
Architectural Coating	0.00	0.00	17,193	5,731	2,878

5.6. Dust Mitigation

5.6.1. Construction Earthmoving Activities

Phase Name	Material Imported (Cubic Yards)	Material Exported (Cubic Yards)	Acres Graded (acres)	Material Demolished (Ton of Debris)	Acres Paved (acres)
Demolition	0.00	0.00	0.00	15.0	—
Site Preparation	0.00	0.00	1.88	0.00	_
Grading	0.00	2,990	5.00	0.00	—
Paving	0.00	0.00	0.00	0.00	1.10

5.6.2. Construction Earthmoving Control Strategies

Non-applicable. No control strategies activated by user.

5.7. Construction Paving

Land Use	Area Paved (acres)	% Asphalt
Elementary School	0.00	0%
Other Asphalt Surfaces	0.64	100%
Parking Lot	0.46	100%

5.8. Construction Electricity Consumption and Emissions Factors

kWh per Year and Emission Factor (lb/MWh)

Year	kWh per Year	CO2	CH4	N2O	
2027	0.00	532	0.03	< 0.005	
B-112					

69 / 81

2028 0.00	532	0.03	< 0.005
-----------	-----	------	---------

5.9. Operational Mobile Sources

5.9.1. Unmitigated

Land Use Type	Trips/Weekday	Trips/Saturday	Trips/Sunday	Trips/Year	VMT/Weekday	VMT/Saturday	VMT/Sunday	VMT/Year
Elementary School	200	0.00	0.00	52,146	2,197	0.00	0.00	572,919
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

5.9.2. Mitigated

Land Use Type	Trips/Weekday	Trips/Saturday	Trips/Sunday	Trips/Year	VMT/Weekday	VMT/Saturday	VMT/Sunday	VMT/Year
Elementary School	200	0.00	0.00	52,146	2,197	0.00	0.00	572,919
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

5.10. Operational Area Sources

5.10.1. Hearths

5.10.1.1. Unmitigated

5.10.1.2. Mitigated

5.10.2. Architectural Coatings

Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)		Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)	
0	0.00	17,193	5,731	2,878	
B-113 70 / 81					

5.10.3. Landscape Equipment

Season	Unit	Value
Snow Days	day/yr	0.00
Summer Days	day/yr	180

5.10.4. Landscape Equipment - Mitigated

Season	Unit	Value
Snow Days	day/yr	0.00
Summer Days	day/yr	180

5.11. Operational Energy Consumption

5.11.1. Unmitigated

Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr)

Land Use	Electricity (kWh/yr)	CO2	CH4	N2O	Natural Gas (kBTU/yr)
Elementary School	116,794	532	0.0330	0.0040	0.00
Other Asphalt Surfaces	0.00	532	0.0330	0.0040	0.00
Parking Lot	17,485	532	0.0330	0.0040	0.00

5.11.2. Mitigated

Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr)

Land Use	Electricity (kWh/yr)	CO2	CH4	N2O	Natural Gas (kBTU/yr)
Elementary School	69,515	532	0.0330	0.0040	0.00
Other Asphalt Surfaces	0.00	532	0.0330	0.0040	0.00
Parking Lot	17,485	532	0.0330	0.0040	0.00

5.12. Operational Water and Wastewater Consumption

5.12.1. Unmitigated

Land Use	Indoor Water (gal/year)	Outdoor Water (gal/year)
Elementary School	332,363	0.00
Other Asphalt Surfaces	0.00	0.00
Parking Lot	0.00	0.00

5.12.2. Mitigated

Land Use	Indoor Water (gal/year)	Outdoor Water (gal/year)
Elementary School	332,363	0.00
Other Asphalt Surfaces	0.00	0.00
Parking Lot	0.00	0.00

5.13. Operational Waste Generation

5.13.1. Unmitigated

Land Use	Waste (ton/year)	Cogeneration (kWh/year)
Elementary School	14.9	_
Other Asphalt Surfaces	0.00	_
Parking Lot	0.00	

5.13.2. Mitigated

Land Use	Waste (ton/year)	Cogeneration (kWh/year)
Elementary School	14.9	_
Other Asphalt Surfaces	0.00	_
Parking Lot	0.00	_

5.14. Operational Refrigeration and Air Conditioning Equipment

5.14.1. Unmitigated

Land Use Type	Equipment Type	Refrigerant	GWP	Quantity (kg)	Operations Leak Rate	Service Leak Rate	Times Serviced
Elementary School	Household refrigerators and/or freezers	R-134a	1,430	0.02	0.60	0.00	1.00
Elementary School	Other commercial A/C and heat pumps	R-410A	2,088	< 0.005	4.00	4.00	18.0
Elementary School	Stand-alone retail refrigerators and freezers	R-134a	1,430	< 0.005	1.00	0.00	1.00
Elementary School	Walk-in refrigerators and freezers	R-404A	3,922	< 0.005	7.50	7.50	20.0

5.14.2. Mitigated

Land Use Type	Equipment Type	Refrigerant	GWP	Quantity (kg)	Operations Leak Rate	Service Leak Rate	Times Serviced
Elementary School	Household refrigerators and/or freezers	R-134a	1,430	0.02	0.60	0.00	1.00
Elementary School	Other commercial A/C and heat pumps	R-410A	2,088	< 0.005	4.00	4.00	18.0
Elementary School	Stand-alone retail refrigerators and freezers	R-134a	1,430	< 0.005	1.00	0.00	1.00
Elementary School	Walk-in refrigerators and freezers	R-404A	3,922	< 0.005	7.50	7.50	20.0

5.15. Operational Off-Road Equipment

5.15.1. Unmitigated

Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
B-116						
B-116 73 / 81						

5.15.2. Mitigated

	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
--	----------------	-----------	-------------	----------------	---------------	------------	-------------

5.16. Stationary Sources

5.16.1. Emergency Generators and Fire Pumps

Equipment Type	Fuel Type	Number per Day	Hours per Day	Hours per Year	Horsepower	Load Factor

5.16.2. Process Boilers

Equipment Type	Fuel Type	Number	Boiler Rating (MMBtu/hr)	Daily Heat Input (MMBtu/day)	Annual Heat Input (MMBtu/yr)
----------------	-----------	--------	--------------------------	------------------------------	------------------------------

5.17. User Defined

Equipment Type		Fuel Type	
5.18. Vegetation			
5.18.1. Land Use Change			
5.18.1.1. Unmitigated			
Vegetation Land Use Type	Vegetation Soil Type	Initial Acres	Final Acres

5.18.1.2. Mitigated

Vegetation Land Use Type	Vegetation Soil Type	Initial Acres	Final Acres

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

Biomass Cover Type Initial Acres Final Acres
--

5.18.1.2. Mitigated

Biomass Cover Type	Initial Acres	F	Final Acres	
5.18.2. Sequestration				
5.18.2.1. Unmitigated				
Тгее Туре	Number	Electricity Saved (kWh/year)	t in the second s	Natural Gas Saved (btu/year)
5.18.2.2. Mitigated				
Tree Type	Number	Electricity Saved (kWh/vear)		Natural Gas Saved (btu/vear)

6. Climate Risk Detailed Report

6.1. Climate Risk Summary

Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100.

Climate Hazard	Result for Project Location	Unit
Temperature and Extreme Heat	27.9	annual days of extreme heat
Extreme Precipitation	1.05	annual days with precipitation above 20 mm
Sea Level Rise	_	meters of inundation depth
Wildfire	0.00	annual hectares burned

Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about ³/₄ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (Radke et al., 2017, CEC-500-2017-008), and consider inundation location and depth for the San Francisco Bay, the Sacramento-San Joaquin River Delta and California coast resulting different increments of sea level rise coupled with extreme storm events. Users may select from four scenarios to view the range in potential inundation depth for the grid cell. The four scenarios are: No rise, 0.5 meter, 1.0 meter, 1.41 meters Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

6.2. Initial Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	N/A	N/A	N/A	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	N/A	N/A	N/A	N/A
Wildfire	N/A	N/A	N/A	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack Reduction	N/A	N/A	N/A	N/A
Air Quality Degradation	N/A	N/A	N/A	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures.

6.3. Adjusted Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	N/A	N/A	N/A	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	N/A	N/A	N/A	N/A
Wildfire	N/A	N/A	N/A	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A B-119	N/A	N/A 120

Snowpack Reduction	N/A	N/A	N/A	N/A
Air Quality Degradation	N/A	N/A	N/A	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

6.4. Climate Risk Reduction Measures

7. Health and Equity Details

7.1. CalEnviroScreen 4.0 Scores

The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

Indicator	Result for Project Census Tract	
Exposure Indicators		
AQ-Ozone	82.5	
AQ-PM	94.6	
AQ-DPM	16.5	
Drinking Water	99.2	
Lead Risk Housing	58.2	
Pesticides	89.6	
Toxic Releases	18.7	
Traffic	5.99	
Effect Indicators		
CleanUp Sites	80.9	
Groundwater	93.6	
Haz Waste Facilities/Generators	71.6	
Impaired Water Bodies	43.8	
Solid Waste	75.7 B-120	121
	77 / 81	

Sensitive Population	—
Asthma	65.9
Cardio-vascular	86.1
Low Birth Weights	44.5
Socioeconomic Factor Indicators	—
Education	86.7
Housing	66.1
Linguistic	87.9
Poverty	85.6
Unemployment	99.7

7.2. Healthy Places Index Scores

The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Economic	
Above Poverty	7.981521879
Employed	12.04927499
Median HI	12.63954831
Education	
Bachelor's or higher	17.25907866
High school enrollment	100
Preschool enrollment	22.08392147
Transportation	
Auto Access	74.57975106
Active commuting	7.35275247
Social	
2-parent households	46.32362376
Voting	46.91389709
	122 121 / 81

Neighborhood	—
Alcohol availability	68.71551392
Park access	7.493904786
Retail density	3.554471962
Supermarket access	14.19222379
Tree canopy	64.63492878
Housing	_
Homeownership	51.00731426
Housing habitability	39.48415244
Low-inc homeowner severe housing cost burden	23.77774926
Low-inc renter severe housing cost burden	34.33850892
Uncrowded housing	37.31553959
Health Outcomes	—
Insured adults	52.48299756
Arthritis	0.0
Asthma ER Admissions	35.8
High Blood Pressure	0.0
Cancer (excluding skin)	0.0
Asthma	0.0
Coronary Heart Disease	0.0
Chronic Obstructive Pulmonary Disease	0.0
Diagnosed Diabetes	0.0
Life Expectancy at Birth	20.9
Cognitively Disabled	66.4
Physically Disabled	29.8
Heart Attack ER Admissions	14.4
Mental Health Not Good	0.0
Chronic Kidney Disease	0.0
	123 B-122 79 / 81

Obesity	0.0
Pedestrian Injuries	62.3
Physical Health Not Good	0.0
Stroke	0.0
Health Risk Behaviors	—
Binge Drinking	0.0
Current Smoker	0.0
No Leisure Time for Physical Activity	0.0
Climate Change Exposures	_
Wildfire Risk	0.0
SLR Inundation Area	0.0
Children	39.2
Elderly	43.3
English Speaking	48.4
Foreign-born	51.5
Outdoor Workers	0.3
Climate Change Adaptive Capacity	<u> </u>
Impervious Surface Cover	92.0
Traffic Density	6.9
Traffic Access	0.0
Other Indices	
Hardship	87.3
Other Decision Support	<u> </u>
2016 Voting	57.9

7.3. Overall Health & Equity Scores

Metric	Result for Project Census Tract	
CalEnviroScreen 4.0 Score for Project Location (a)	96.0 123	124
	/ 81	

Healthy Places Index Score for Project Location (b)	16.0
Project Located in a Designated Disadvantaged Community (Senate Bill 535)	Yes
Project Located in a Low-Income Community (Assembly Bill 1550)	Yes
Project Located in a Community Air Protection Program Community (Assembly Bill 617)	No

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

7.4. Health & Equity Measures

No Health & Equity Measures selected.

7.5. Evaluation Scorecard

Health & Equity Evaluation Scorecard not completed. 7.6. Health & Equity Custom Measures

No Health & Equity Custom Measures created.

8. User Changes to Default Data

Screen	Justification
Construction: Construction Phases	Adjusted for a 12-month construction schedule
Construction: Trips and VMT	Adjusted to account for demolition and soil hauling and on-site water trucks
Construction: Dust From Material Movement	—
Operations: Vehicle Data	Garland Associates 2024 TIA
Operations: Energy Use	District provided information - 30,600 kWh/year PV system accounting for 26.2% of building demand.